Optimizing BOINC scheduling using genetic algorithm based on thermal profile

Norzatul Natrah Binti, M. Nordin Bin Zakaria, Izzatdin Bin Abdul Aziz, Nazleeni Samiha Binti
{"title":"Optimizing BOINC scheduling using genetic algorithm based on thermal profile","authors":"Norzatul Natrah Binti, M. Nordin Bin Zakaria, Izzatdin Bin Abdul Aziz, Nazleeni Samiha Binti","doi":"10.1109/ICCOINS.2014.6868837","DOIUrl":null,"url":null,"abstract":"Berkeley Open Infrastructure for Network Computing (BOINC) is an open source middleware for volunteer and grid computing. Main function of BOINC is to use the idle time of computer to run some computation at background. Universiti Teknologi Petronas (UTP) campus grid used BOINC as middleware in computer labs. However, computer can only process jobs during weekday and office hour because they want to reduce energy used for cooling power. In order to fully utilize the computer in labs, we proposed new jobs scheduling algorithm can run based on thermal constraint. The proposed algorithm is combination of thermal profile and heuristic approach. We use genetic algorithm to find the best combination of clients and jobs based on clients order and least execution time. Then we compare our algorithm with brute force method. Result from simulation it shows that proposed algorithm successfully distribute and execute job based on thermal constraints in an effective and efficient way compare to brute force method.","PeriodicalId":368100,"journal":{"name":"2014 International Conference on Computer and Information Sciences (ICCOINS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computer and Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS.2014.6868837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Berkeley Open Infrastructure for Network Computing (BOINC) is an open source middleware for volunteer and grid computing. Main function of BOINC is to use the idle time of computer to run some computation at background. Universiti Teknologi Petronas (UTP) campus grid used BOINC as middleware in computer labs. However, computer can only process jobs during weekday and office hour because they want to reduce energy used for cooling power. In order to fully utilize the computer in labs, we proposed new jobs scheduling algorithm can run based on thermal constraint. The proposed algorithm is combination of thermal profile and heuristic approach. We use genetic algorithm to find the best combination of clients and jobs based on clients order and least execution time. Then we compare our algorithm with brute force method. Result from simulation it shows that proposed algorithm successfully distribute and execute job based on thermal constraints in an effective and efficient way compare to brute force method.
基于热剖面的遗传算法优化BOINC调度
伯克利网络计算开放基础设施(BOINC)是一个用于志愿计算和网格计算的开源中间件。BOINC的主要功能是利用计算机的空闲时间在后台运行一些计算。马来西亚国家石油大学(UTP)校园网格在计算机实验室中使用BOINC作为中间件。然而,计算机只能在工作日和办公时间处理工作,因为它们想减少用于冷却电源的能源。为了充分利用实验室中的计算机,我们提出了一种新的基于热约束的作业调度算法。该算法是热剖面法和启发式算法的结合。采用遗传算法,根据客户的订单和最短的执行时间找到客户和作业的最佳组合。然后将该算法与蛮力算法进行了比较。仿真结果表明,与暴力破解方法相比,该算法能够有效地分配和执行基于热约束的作业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信