Real-time Lane Violation Detection System using Feature Tracking

H. Lee, SungHwan Jeong, Joonwhoan Lee
{"title":"Real-time Lane Violation Detection System using Feature Tracking","authors":"H. Lee, SungHwan Jeong, Joonwhoan Lee","doi":"10.3745/KIPSTB.2011.18B.4.201","DOIUrl":null,"url":null,"abstract":"In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorism in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. The feature is extracted from the morphological gradient image, which results in constructing robust detection system against shadows, weather conditions, head lights and illumination conditions without distinction day and night. The system shows excellent performance for the data captured at day time, night time, and rainy night time as much as 99.49% for positive recognition ratio and 0.51% for error ratio. Also the system is so fast as much as 91.34 frames per second in average that it may be possible for real-time processing.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2011.18B.4.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorism in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. The feature is extracted from the morphological gradient image, which results in constructing robust detection system against shadows, weather conditions, head lights and illumination conditions without distinction day and night. The system shows excellent performance for the data captured at day time, night time, and rainy night time as much as 99.49% for positive recognition ratio and 0.51% for error ratio. Also the system is so fast as much as 91.34 frames per second in average that it may be possible for real-time processing.
基于特征跟踪的车道违规实时检测系统
本文提出了一种基于特征点跟踪的车道违章车辆检测系统,该系统可以检测出车道违章车辆。本文提出的车道违章车辆检测系统的整个算法由特征提取、目标车辆特征的注册与跟踪、车道违章车辆检测三个阶段组成。从形态学梯度图像中提取特征,从而构建对阴影、天气条件、头灯和照明条件无昼夜区分的鲁棒检测系统。该系统对白天、夜间和雨夜采集的数据表现出优异的性能,正识别率高达99.49%,错误率为0.51%。此外,系统的速度是如此之快,高达每秒91.34帧,这可能是实时处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信