Adaptive EEG transient event discrimination using dynamic LMS filter weight leakage

D. A. Campbell
{"title":"Adaptive EEG transient event discrimination using dynamic LMS filter weight leakage","authors":"D. A. Campbell","doi":"10.1109/ISSPA.1999.818186","DOIUrl":null,"url":null,"abstract":"The EEG is a highly complex and dynamic signal comprising a large ensemble of time-varying, statistical properties. Such diverse signal properties pose significant challenges in processing the EEG. A dynamic weight leakage based LMS adaptive linear predictor has been developed to discriminate for transient events within the EEG, and in particular, epileptiform discharges. The resulting procedure improves the SNR of these events by at least two-fold, leading to greater selectivity in subsequent epileptiform event detection stages.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.818186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The EEG is a highly complex and dynamic signal comprising a large ensemble of time-varying, statistical properties. Such diverse signal properties pose significant challenges in processing the EEG. A dynamic weight leakage based LMS adaptive linear predictor has been developed to discriminate for transient events within the EEG, and in particular, epileptiform discharges. The resulting procedure improves the SNR of these events by at least two-fold, leading to greater selectivity in subsequent epileptiform event detection stages.
基于动态LMS滤波权漏的自适应脑电瞬态事件判别
脑电图是一个高度复杂的动态信号,包含大量时变统计特性。如此多样的信号特性给脑电图的处理带来了巨大的挑战。一种基于动态权重泄漏的LMS自适应线性预测器已被开发出来,以区分脑电图中的瞬态事件,特别是癫痫样放电。由此产生的程序将这些事件的信噪比提高了至少两倍,从而在随后的癫痫样事件检测阶段具有更大的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信