Improving localization accuracy based on Lightweight Visual Odometry

D. Pojar, P. Jeong, S. Nedevschi
{"title":"Improving localization accuracy based on Lightweight Visual Odometry","authors":"D. Pojar, P. Jeong, S. Nedevschi","doi":"10.1109/ITSC.2010.5625176","DOIUrl":null,"url":null,"abstract":"New methods based on vision have emerged in the area of mobile vehicle localization. Such methods offer an improved alternative in terms of accuracy to traditional localization methods like wheel odometry. In this paper we propose such a method that does not compromise precision and can run in real time. Depending on environment, feature numbers are sometimes insufficient. To solve this, our algorithm allows using slower feature detectors like SURF for frame keypoints, together with Shi-Tomasi corners for increasing points number. We show how accuracy is further improved by using a Kalman filter to enhance the computation of pose to pose relative motion variation.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5625176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

New methods based on vision have emerged in the area of mobile vehicle localization. Such methods offer an improved alternative in terms of accuracy to traditional localization methods like wheel odometry. In this paper we propose such a method that does not compromise precision and can run in real time. Depending on environment, feature numbers are sometimes insufficient. To solve this, our algorithm allows using slower feature detectors like SURF for frame keypoints, together with Shi-Tomasi corners for increasing points number. We show how accuracy is further improved by using a Kalman filter to enhance the computation of pose to pose relative motion variation.
基于轻量级视觉里程计的定位精度提高
在移动车辆定位领域出现了基于视觉的新方法。这种方法在精度方面比传统的定位方法(如车轮里程计)提供了改进的选择。本文提出了一种既不影响精度又能实时运行的方法。根据环境的不同,特性数量有时是不够的。为了解决这个问题,我们的算法允许使用较慢的特征检测器(如SURF)来识别帧关键点,并使用Shi-Tomasi角来增加点的数量。我们展示了如何通过使用卡尔曼滤波来增强姿态相对运动变化的计算来进一步提高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信