Computing Nearby Non-trivial Smith Forms

M. Giesbrecht, Joseph Haraldson, G. Labahn
{"title":"Computing Nearby Non-trivial Smith Forms","authors":"M. Giesbrecht, Joseph Haraldson, G. Labahn","doi":"10.1145/3208976.3209024","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing the nearest matrix polynomial with a non-trivial Smith Normal Form. We show that computing the Smith form of a matrix polynomial is amenable to numeric computation as an optimization problem. Furthermore, we describe an effective optimization technique to find a nearby matrix polynomial with a non-trivial Smith form. The results are later generalized to include the computation of a matrix polynomial having a maximum specified number of ones in the Smith Form (i.e., with a maximum specified McCoy rank). We discuss the geometry and existence of solutions and how our results can used for a backwards error analysis. We develop an optimization-based approach and demonstrate an iterative numerical method for computing a nearby matrix polynomial with the desired spectral properties. We also describe the implementation of our algorithms and demonstrate the robustness with examples in Maple.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the problem of computing the nearest matrix polynomial with a non-trivial Smith Normal Form. We show that computing the Smith form of a matrix polynomial is amenable to numeric computation as an optimization problem. Furthermore, we describe an effective optimization technique to find a nearby matrix polynomial with a non-trivial Smith form. The results are later generalized to include the computation of a matrix polynomial having a maximum specified number of ones in the Smith Form (i.e., with a maximum specified McCoy rank). We discuss the geometry and existence of solutions and how our results can used for a backwards error analysis. We develop an optimization-based approach and demonstrate an iterative numerical method for computing a nearby matrix polynomial with the desired spectral properties. We also describe the implementation of our algorithms and demonstrate the robustness with examples in Maple.
计算邻近非平凡史密斯形式
研究了具有非平凡史密斯范式的最近矩阵多项式的计算问题。我们证明了计算矩阵多项式的史密斯形式是一个适合于数值计算的优化问题。此外,我们还描述了一种有效的寻优方法来寻找具有非平凡Smith形式的邻近矩阵多项式。这些结果后来被推广到包括具有Smith形式中最大指定数的矩阵多项式的计算(即具有最大指定McCoy秩)。我们讨论了几何和解的存在性,以及我们的结果如何用于向后误差分析。我们开发了一种基于优化的方法,并演示了一种迭代数值方法,用于计算具有所需谱性质的附近矩阵多项式。我们还描述了我们的算法的实现,并用Maple中的示例演示了鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信