Sig-SDEs model for quantitative finance

Imanol Perez Arribas, C. Salvi, L. Szpruch
{"title":"Sig-SDEs model for quantitative finance","authors":"Imanol Perez Arribas, C. Salvi, L. Szpruch","doi":"10.1145/3383455.3422553","DOIUrl":null,"url":null,"abstract":"Mathematical models, calibrated to data, have become ubiquitous to make key decision processes in modern quantitative finance. In this work, we propose a novel framework for data-driven model selection by integrating a classical quantitative setup with a generative modelling approach. Leveraging the properties of the signature, a well-known path-transform from stochastic analysis that recently emerged as leading machine learning technology for learning time-series data, we develop the Sig-SDE model. Sig-SDE provides a new perspective on neural SDEs and can be calibrated to exotic financial products that depend, in a non-linear way, on the whole trajectory of asset prices. Furthermore, we our approach enables to consistently calibrate under the pricing measure Q and real-world measure P. Finally, we demonstrate the ability of Sig-SDE to simulate future possible market scenarios needed for computing risk profiles or hedging strategies. Importantly, this new model is underpinned by rigorous mathematical analysis, that under appropriate conditions provides theoretical guarantees for convergence of the presented algorithms.","PeriodicalId":447950,"journal":{"name":"Proceedings of the First ACM International Conference on AI in Finance","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3383455.3422553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Mathematical models, calibrated to data, have become ubiquitous to make key decision processes in modern quantitative finance. In this work, we propose a novel framework for data-driven model selection by integrating a classical quantitative setup with a generative modelling approach. Leveraging the properties of the signature, a well-known path-transform from stochastic analysis that recently emerged as leading machine learning technology for learning time-series data, we develop the Sig-SDE model. Sig-SDE provides a new perspective on neural SDEs and can be calibrated to exotic financial products that depend, in a non-linear way, on the whole trajectory of asset prices. Furthermore, we our approach enables to consistently calibrate under the pricing measure Q and real-world measure P. Finally, we demonstrate the ability of Sig-SDE to simulate future possible market scenarios needed for computing risk profiles or hedging strategies. Importantly, this new model is underpinned by rigorous mathematical analysis, that under appropriate conditions provides theoretical guarantees for convergence of the presented algorithms.
量化金融的Sig-SDEs模型
在现代定量金融中,对数据进行校准的数学模型在关键决策过程中无处不在。在这项工作中,我们通过将经典的定量设置与生成建模方法相结合,提出了一种新的数据驱动模型选择框架。利用签名的特性,我们开发了Sig-SDE模型,签名是一种著名的随机分析路径变换,最近成为学习时间序列数据的领先机器学习技术。Sig-SDE为神经sde提供了一个新的视角,并且可以校准到以非线性方式依赖于资产价格整体轨迹的奇异金融产品。此外,我们的方法能够在定价措施Q和现实世界措施p下持续校准。最后,我们展示了Sig-SDE模拟计算风险概况或对冲策略所需的未来可能市场情景的能力。重要的是,这个新模型是由严格的数学分析支撑的,在适当的条件下,为所提出的算法的收敛提供了理论保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信