Long word addition: A statistical approach for high speed arithmetic applications

S. Bouaziz, A. Elouardi, B. Larnaudie, M. A. Khettat
{"title":"Long word addition: A statistical approach for high speed arithmetic applications","authors":"S. Bouaziz, A. Elouardi, B. Larnaudie, M. A. Khettat","doi":"10.1109/WOSSPA.2011.5931416","DOIUrl":null,"url":null,"abstract":"Encryption algorithms need high performance computations based on large data width operators. Traditional improvements of the carry propagation delay have often implied increasing the silicon surface. This paper presents a formalized approach for arithmetic operators using large data width. We will focus on the arithmetic adder. Our approach uses a statistical evaluation of the carry propagation delay which is considered better than the critical path delay. The designed operator will be used to implement Modular Multiplication intended for RSA cryptography applications.","PeriodicalId":343415,"journal":{"name":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2011.5931416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Encryption algorithms need high performance computations based on large data width operators. Traditional improvements of the carry propagation delay have often implied increasing the silicon surface. This paper presents a formalized approach for arithmetic operators using large data width. We will focus on the arithmetic adder. Our approach uses a statistical evaluation of the carry propagation delay which is considered better than the critical path delay. The designed operator will be used to implement Modular Multiplication intended for RSA cryptography applications.
长字加法:用于高速算术应用的统计方法
加密算法需要基于大数据宽度算子的高性能计算。传统的携带传输延迟的改进通常意味着增加硅表面。本文提出了一种使用大数据宽度的算术运算符的形式化方法。我们将集中讨论算术加法器。我们的方法使用了一种比关键路径延迟更好的进位传播延迟的统计评估。所设计的运算符将用于实现RSA加密应用的模块化乘法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信