Supervised adapted factor analysis algorithm for multimodal data classification

Ping Wang, Hong Zhang
{"title":"Supervised adapted factor analysis algorithm for multimodal data classification","authors":"Ping Wang, Hong Zhang","doi":"10.1109/ICIEA.2017.8283147","DOIUrl":null,"url":null,"abstract":"In recent years, multimodal data processing has enjoyed an increasing attention. Multimodal document means different modal multimedia data representing the same semantics. In this paper, the problem of multimodal document classification is studied. As the text features have more obvious advantages than the image features over the classification problem, on the basis of factor analysis, the paper proposes a supervised algorithm which projects image space into text space and then learns a linear classifier for classification in the text space. Encouraging experiment results on three benchmark datasets demonstrate the superiority and effectiveness of proposed methods over most existing algorithms.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, multimodal data processing has enjoyed an increasing attention. Multimodal document means different modal multimedia data representing the same semantics. In this paper, the problem of multimodal document classification is studied. As the text features have more obvious advantages than the image features over the classification problem, on the basis of factor analysis, the paper proposes a supervised algorithm which projects image space into text space and then learns a linear classifier for classification in the text space. Encouraging experiment results on three benchmark datasets demonstrate the superiority and effectiveness of proposed methods over most existing algorithms.
多模态数据分类的监督自适应因子分析算法
近年来,多模态数据处理越来越受到人们的关注。多模态文档是指表示相同语义的不同模态多媒体数据。本文研究了多模态文档分类问题。由于文本特征在分类问题上比图像特征具有更明显的优势,本文在因子分析的基础上提出了一种监督算法,该算法将图像空间投影到文本空间中,然后学习一个线性分类器在文本空间中进行分类。在三个基准数据集上的令人鼓舞的实验结果表明,所提出的方法比大多数现有算法具有优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信