IMU/GPS based pedestrian localization

Ling Chen, Huosheng Hu
{"title":"IMU/GPS based pedestrian localization","authors":"Ling Chen, Huosheng Hu","doi":"10.1109/CEEC.2012.6375373","DOIUrl":null,"url":null,"abstract":"The low cost Inertial Measurement Unit(IMU) can be used to provide accurate position information of a pedestrian when it is combined with Global Positioning System(GPS). This paper investigates how the integration of IMU anf GPS can be effectively used in pedestrian localization. The position calculation is achieved in sequence by three different strategies, namely basic double integration of IMU data, Zero-velocity Update (ZUPT) and Extended Kalman Filter(EKF) based fusion of IMU and GPS data. Experiments that are conducted in two fields show that EKF based localization outperform the double integration and ZUPT methods in terms of both positioning accuracy and robustness.","PeriodicalId":142286,"journal":{"name":"2012 4th Computer Science and Electronic Engineering Conference (CEEC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th Computer Science and Electronic Engineering Conference (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2012.6375373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The low cost Inertial Measurement Unit(IMU) can be used to provide accurate position information of a pedestrian when it is combined with Global Positioning System(GPS). This paper investigates how the integration of IMU anf GPS can be effectively used in pedestrian localization. The position calculation is achieved in sequence by three different strategies, namely basic double integration of IMU data, Zero-velocity Update (ZUPT) and Extended Kalman Filter(EKF) based fusion of IMU and GPS data. Experiments that are conducted in two fields show that EKF based localization outperform the double integration and ZUPT methods in terms of both positioning accuracy and robustness.
基于IMU/GPS的行人定位
低成本的惯性测量单元(IMU)与全球定位系统(GPS)相结合,可以提供准确的行人位置信息。本文研究了IMU和GPS的结合如何有效地应用于行人定位。通过IMU数据的基本双积分、零速度更新(ZUPT)和基于扩展卡尔曼滤波(EKF)的IMU与GPS数据融合三种不同的策略,顺序实现定位计算。在两个领域进行的实验表明,基于EKF的定位在定位精度和鲁棒性方面都优于双积分和ZUPT方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信