{"title":"BACKWARD NORDSIECK’S METHODS FOR NUMERICAL SOLVING OF ORDINARY DIFFERENTIAL EQUATIONS","authors":"V. Bucharskyi","doi":"10.36074/20.11.2020.v5.25","DOIUrl":null,"url":null,"abstract":"where: z = (u, τu, τu, ... , τu ) – Nordsieck’s vector, τ – integration step, М – the number of terms in the Taylor series expansion of the function u(t), D, L – upper triangular and diagonal matrices whose element’s values di,j = { 1 (i−j)! , i ≥ j 0, i < j , li,i = τM−i+1 (M−i+1)! follow from the series expansion, q – a vector of free parameters that determines the properties of the numerical method,","PeriodicalId":235647,"journal":{"name":"MODALITĂȚI CONCEPTUALE DE DEZVOLTARE A ȘTIINȚEI MODERNE- VOLUMEN 5","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MODALITĂȚI CONCEPTUALE DE DEZVOLTARE A ȘTIINȚEI MODERNE- VOLUMEN 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36074/20.11.2020.v5.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
where: z = (u, τu, τu, ... , τu ) – Nordsieck’s vector, τ – integration step, М – the number of terms in the Taylor series expansion of the function u(t), D, L – upper triangular and diagonal matrices whose element’s values di,j = { 1 (i−j)! , i ≥ j 0, i < j , li,i = τM−i+1 (M−i+1)! follow from the series expansion, q – a vector of free parameters that determines the properties of the numerical method,