Single objective real-parameter optimization: Algorithm jSO

J. Brest, M. Maučec, B. Bošković
{"title":"Single objective real-parameter optimization: Algorithm jSO","authors":"J. Brest, M. Maučec, B. Bošković","doi":"10.1109/CEC.2017.7969456","DOIUrl":null,"url":null,"abstract":"Solving single objective real-parameter optimization problems, also known as a bound-constrained optimization, is still a challenging task. We can find such problems in engineering optimization, scientific applications, and in other real-world problems. Usually, these problems are very complex and computationally expensive. A new algorithm, called jSO, is presented in this paper. The algorithm is an improved variant of the iL-SHADE algorithm, mainly with a new weighted version of mutation strategy. The experiments were performed on CEC 2017 benchmark functions, which are different from previous competition benchmark functions. A comparison of the proposed jSO algorithm and the L-SHADE algorithm is presented first. From the obtained results we can conclude that jSO performs better in comparison with the L-SHADE algorithm. Next, a comparison of jSO and iL-SHADE is also performed, and jSO obtained better or competitive results. Using the CEC 2017 evaluation method, jSO obtained the best final score among these three algorithms.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"286","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 286

Abstract

Solving single objective real-parameter optimization problems, also known as a bound-constrained optimization, is still a challenging task. We can find such problems in engineering optimization, scientific applications, and in other real-world problems. Usually, these problems are very complex and computationally expensive. A new algorithm, called jSO, is presented in this paper. The algorithm is an improved variant of the iL-SHADE algorithm, mainly with a new weighted version of mutation strategy. The experiments were performed on CEC 2017 benchmark functions, which are different from previous competition benchmark functions. A comparison of the proposed jSO algorithm and the L-SHADE algorithm is presented first. From the obtained results we can conclude that jSO performs better in comparison with the L-SHADE algorithm. Next, a comparison of jSO and iL-SHADE is also performed, and jSO obtained better or competitive results. Using the CEC 2017 evaluation method, jSO obtained the best final score among these three algorithms.
单目标实参数优化:jSO算法
求解单目标实参数优化问题,也称为边界约束优化,仍然是一项具有挑战性的任务。我们可以在工程优化、科学应用和其他现实问题中找到这样的问题。通常,这些问题非常复杂,计算成本很高。本文提出了一种新的jSO算法。该算法是对iL-SHADE算法的改进,主要采用了一种新的加权变异策略。实验在CEC 2017基准函数上进行,不同于以往的竞争基准函数。首先对jSO算法和L-SHADE算法进行了比较。从得到的结果我们可以得出结论,与L-SHADE算法相比,jSO的性能更好。接下来,对jSO和iL-SHADE进行了比较,jSO获得了更好或更具竞争力的结果。使用CEC 2017评价方法,jSO在这三种算法中获得了最好的最终分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信