MUSIC: A hybrid computing environment for burrows-wheeler alignment for massive amount of short read sequence data

Saurabh Gupta, Sanjoy Chaudhury, B. Panda
{"title":"MUSIC: A hybrid computing environment for burrows-wheeler alignment for massive amount of short read sequence data","authors":"Saurabh Gupta, Sanjoy Chaudhury, B. Panda","doi":"10.1109/MECBME.2014.6783237","DOIUrl":null,"url":null,"abstract":"High-throughput DNA sequencers are becoming indispensible in our understanding of diseases at molecular level, in marker-assisted selection in agriculture and in microbial genetics research. These sequencing instruments produce enormous amount of data (often terabytes of raw data in a month) that requires efficient analysis, management and interpretation. The commonly used sequencing instrument today produces billions of short reads (upto 150 bases) from each run. The first step in the data analysis step is alignment of these short reads to the reference genome of choice. There are different open source algorithms available for sequence alignment to the reference genome. These tools normally have a high computational overhead, both in terms of number of processors and memory. Here, we propose a hybridcomputing environment called MUSIC (Mapping USIng hybrid Computing) for one of the most popular open source sequence alignment algorithm, BWA, using accelerators that show significant improvement in speed over the serial code.","PeriodicalId":384055,"journal":{"name":"2nd Middle East Conference on Biomedical Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd Middle East Conference on Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECBME.2014.6783237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

High-throughput DNA sequencers are becoming indispensible in our understanding of diseases at molecular level, in marker-assisted selection in agriculture and in microbial genetics research. These sequencing instruments produce enormous amount of data (often terabytes of raw data in a month) that requires efficient analysis, management and interpretation. The commonly used sequencing instrument today produces billions of short reads (upto 150 bases) from each run. The first step in the data analysis step is alignment of these short reads to the reference genome of choice. There are different open source algorithms available for sequence alignment to the reference genome. These tools normally have a high computational overhead, both in terms of number of processors and memory. Here, we propose a hybridcomputing environment called MUSIC (Mapping USIng hybrid Computing) for one of the most popular open source sequence alignment algorithm, BWA, using accelerators that show significant improvement in speed over the serial code.
MUSIC:一个混合计算环境,用于对大量短读序列数据进行钻穴-惠勒对齐
高通量DNA测序仪在分子水平上对疾病的理解、农业中的标记辅助选择和微生物遗传学研究中变得不可或缺。这些测序仪器产生了大量的数据(通常是一个月tb级的原始数据),需要有效的分析、管理和解释。目前常用的测序仪器从每次运行中产生数十亿个短读数(最多150个碱基)。数据分析的第一步是将这些短序列与所选择的参考基因组进行比对。有不同的开源算法可用于序列比对参考基因组。这些工具通常有很高的计算开销,包括处理器和内存的数量。在这里,我们为最流行的开源序列比对算法之一BWA提出了一个称为MUSIC (Mapping USIng hybrid Computing)的混合计算环境,该环境使用的加速器比串行代码的速度有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信