Recognizing Long-Form Speech Using Streaming End-to-End Models

A. Narayanan, Rohit Prabhavalkar, C. Chiu, David Rybach, Tara N. Sainath, Trevor Strohman
{"title":"Recognizing Long-Form Speech Using Streaming End-to-End Models","authors":"A. Narayanan, Rohit Prabhavalkar, C. Chiu, David Rybach, Tara N. Sainath, Trevor Strohman","doi":"10.1109/ASRU46091.2019.9003913","DOIUrl":null,"url":null,"abstract":"All-neural end-to-end (E2E) automatic speech recognition (ASR) systems that use a single neural network to transduce audio to word sequences have been shown to achieve state-of-the-art results on several tasks. In this work, we examine the ability of E2E models to generalize to unseen domains, where we find that models trained on short utterances fail to generalize to long-form speech. We propose two complementary solutions to address this: training on diverse acoustic data, and LSTM state manipulation to simulate long-form audio when training using short utterances. On a synthesized long-form test set, adding data diversity improves word error rate (WER) by 90% relative, while simulating long-form training improves it by 67% relative, though the combination doesn't improve over data diversity alone. On a real long-form call-center test set, adding data diversity improves WER by 40% relative. Simulating long-form training on top of data diversity improves performance by an additional 27% relative.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

All-neural end-to-end (E2E) automatic speech recognition (ASR) systems that use a single neural network to transduce audio to word sequences have been shown to achieve state-of-the-art results on several tasks. In this work, we examine the ability of E2E models to generalize to unseen domains, where we find that models trained on short utterances fail to generalize to long-form speech. We propose two complementary solutions to address this: training on diverse acoustic data, and LSTM state manipulation to simulate long-form audio when training using short utterances. On a synthesized long-form test set, adding data diversity improves word error rate (WER) by 90% relative, while simulating long-form training improves it by 67% relative, though the combination doesn't improve over data diversity alone. On a real long-form call-center test set, adding data diversity improves WER by 40% relative. Simulating long-form training on top of data diversity improves performance by an additional 27% relative.
使用端到端流模型识别长格式语音
全神经端到端(E2E)自动语音识别(ASR)系统使用单个神经网络将音频转换为单词序列,已被证明在若干任务中取得了最先进的结果。在这项工作中,我们研究了E2E模型推广到未知领域的能力,在这些领域中,我们发现在短话语上训练的模型无法推广到长话语。我们提出了两个互补的解决方案来解决这个问题:在不同的声学数据上进行训练,以及在使用短话语训练时使用LSTM状态操作来模拟长格式音频。在合成的长格式测试集上,添加数据多样性可以将单词错误率(WER)相对提高90%,而模拟长格式训练则可以将其相对提高67%,尽管两者的组合并不能单独提高数据多样性。在一个真正的长格式呼叫中心测试集上,添加数据分集使WER相对提高了40%。在数据多样性的基础上模拟长形式训练可以使性能提高27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信