Sensor fusion by principal and independent component decomposition using neural networks

F. Salam, G. Erten
{"title":"Sensor fusion by principal and independent component decomposition using neural networks","authors":"F. Salam, G. Erten","doi":"10.1109/MFI.1999.815991","DOIUrl":null,"url":null,"abstract":"The paper describes a view to use both principal component analysis (PCA) and independent component analysis (ICA) within the context of sensor fusion. A nonlinear version of PCA would be appropriate for representing signals/data which span a submanifold structure in its coordinate space. The nonlinear PCA is a candidate for data reduction/compression where multisensors are measurement the same type of signal, e.g., image or sound. In contrast the ICA is a candidate for fusing different types of signals, e.g., image, sound, acceleration, etc., to generate independent components. The PCA approach can be used to transfer compressed data then reconstruct the information bearing signal for use. While the ICA may be used to infer the condition/state of the environment, e.g., office building, airport, etc. Thus the two approaches can be integrated to form a complementary sensory fusion system.","PeriodicalId":148154,"journal":{"name":"Proceedings. 1999 IEEE/SICE/RSJ. International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI'99 (Cat. No.99TH8480)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE/SICE/RSJ. International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI'99 (Cat. No.99TH8480)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1999.815991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper describes a view to use both principal component analysis (PCA) and independent component analysis (ICA) within the context of sensor fusion. A nonlinear version of PCA would be appropriate for representing signals/data which span a submanifold structure in its coordinate space. The nonlinear PCA is a candidate for data reduction/compression where multisensors are measurement the same type of signal, e.g., image or sound. In contrast the ICA is a candidate for fusing different types of signals, e.g., image, sound, acceleration, etc., to generate independent components. The PCA approach can be used to transfer compressed data then reconstruct the information bearing signal for use. While the ICA may be used to infer the condition/state of the environment, e.g., office building, airport, etc. Thus the two approaches can be integrated to form a complementary sensory fusion system.
基于主成分分解和神经网络的传感器融合
本文提出了在传感器融合中同时使用主成分分析(PCA)和独立成分分析(ICA)的观点。PCA的非线性版本将适合于表示在其坐标空间中跨越子流形结构的信号/数据。非线性PCA是数据缩减/压缩的候选,其中多个传感器测量相同类型的信号,例如图像或声音。相比之下,ICA是融合不同类型信号的候选,例如,图像,声音,加速度等,以产生独立的分量。主成分分析方法可用于传输压缩数据,然后重建信息承载信号以供使用。而ICA可用于推断环境的条件/状态,例如,办公楼,机场等。因此,这两种方法可以整合形成一个互补的感觉融合系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信