Positome: A method for improving protein-protein interaction quality and prediction accuracy

K. Dick, F. Dehne, A. Golshani, J. Green
{"title":"Positome: A method for improving protein-protein interaction quality and prediction accuracy","authors":"K. Dick, F. Dehne, A. Golshani, J. Green","doi":"10.1109/CIBCB.2017.8058545","DOIUrl":null,"url":null,"abstract":"The progressive elucidation of positive protein-protein interactions (PPIs) as wet-lab techniques continue to improve in both throughput and precision has increased the number and quality of known PPIs across the spectrum of life. Creating high quality datasets of positive PPIs is critical for training PPI prediction algorithms and for assessing the performance of PPI detection efforts. We present the Positome, a web service to acquire sets of positive PPIs based on user-defined criteria pertaining to data provenance including interaction type, throughput level, and detection method selection in addition to filtration by multiple lines of evidence (i.e. PPIs reported by independent research groups). The Positome provides a tunable interface to obtain a specified subset of interacting PPIs from the BioGRlD database. Both intra- and inter-species PPIs are supported. Using a number of model organisms, we demonstrate the trade-off between data quality and quantity, and the benefit of higher data quality on PPI prediction precision and recall. A web interface and REST web service are available at http://bioinf.sce.carleton.ca/POSITOME/.","PeriodicalId":283115,"journal":{"name":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2017.8058545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The progressive elucidation of positive protein-protein interactions (PPIs) as wet-lab techniques continue to improve in both throughput and precision has increased the number and quality of known PPIs across the spectrum of life. Creating high quality datasets of positive PPIs is critical for training PPI prediction algorithms and for assessing the performance of PPI detection efforts. We present the Positome, a web service to acquire sets of positive PPIs based on user-defined criteria pertaining to data provenance including interaction type, throughput level, and detection method selection in addition to filtration by multiple lines of evidence (i.e. PPIs reported by independent research groups). The Positome provides a tunable interface to obtain a specified subset of interacting PPIs from the BioGRlD database. Both intra- and inter-species PPIs are supported. Using a number of model organisms, we demonstrate the trade-off between data quality and quantity, and the benefit of higher data quality on PPI prediction precision and recall. A web interface and REST web service are available at http://bioinf.sce.carleton.ca/POSITOME/.
正体:一种提高蛋白质相互作用质量和预测精度的方法
随着湿实验室技术在通量和精度上的不断提高,对蛋白质-蛋白质正相互作用(PPIs)的逐步阐明增加了已知PPIs在生命谱中的数量和质量。创建高质量的PPI阳性数据集对于训练PPI预测算法和评估PPI检测工作的性能至关重要。我们提出了Positome,这是一种基于用户定义的数据来源标准(包括交互类型、吞吐量水平和检测方法选择)获取阳性ppi集的web服务,此外还通过多条证据线(即独立研究小组报告的ppi)进行过滤。Positome提供了一个可调的接口,从BioGRlD数据库中获取指定的交互ppi子集。支持种内和种间ppi。使用一些模式生物,我们证明了数据质量和数量之间的权衡,以及更高的数据质量对PPI预测精度和召回率的好处。web界面和REST web服务可在http://bioinf.sce.carleton.ca/POSITOME/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信