Using a double-based genetic algorithm on a population of computer programs

P. Collard, J.-L. Segapeli
{"title":"Using a double-based genetic algorithm on a population of computer programs","authors":"P. Collard, J.-L. Segapeli","doi":"10.1109/TAI.1994.346462","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach, which improves the performance of a genetic algorithm. Genetic algorithms are iterative search procedures based on natural genetic. We use an original genetic algorithm that manipulates pairs of twins in its population: DGA, double-based genetic algorithm. We show that this approach is relevant for genetic programming, which manipulates populations of trees. In particular, we show that doubles enable to transform a deceptive problem into a convergent one. We also prove that using pairs of double functions in the primitive function set is more efficient in the problem of learning boolean functions.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we present a new approach, which improves the performance of a genetic algorithm. Genetic algorithms are iterative search procedures based on natural genetic. We use an original genetic algorithm that manipulates pairs of twins in its population: DGA, double-based genetic algorithm. We show that this approach is relevant for genetic programming, which manipulates populations of trees. In particular, we show that doubles enable to transform a deceptive problem into a convergent one. We also prove that using pairs of double functions in the primitive function set is more efficient in the problem of learning boolean functions.<>
在一组计算机程序中使用双基遗传算法
本文提出了一种改进遗传算法性能的新方法。遗传算法是基于自然遗传的迭代搜索过程。我们使用一种原始的遗传算法来操纵其种群中的双胞胎:DGA,双基遗传算法。我们表明,这种方法是相关的遗传规划,它操纵树木的种群。特别地,我们证明了双精度可以将欺骗性问题转化为收敛性问题。我们还证明了在原始函数集中使用双函数对学习布尔函数的效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信