The constrained generalized data windowing conjugate gradient algorithm

J. A. Apolinário, M. D. De Campos
{"title":"The constrained generalized data windowing conjugate gradient algorithm","authors":"J. A. Apolinário, M. D. De Campos","doi":"10.1109/SPAWC.2008.4641656","DOIUrl":null,"url":null,"abstract":"This paper introduces a constrained version of a recently proposed generalized data windowing scheme applied to the conjugate gradient algorithm. This scheme combines two types of data windowing, the finite-data sliding window and the exponentially weighted data window, in an attempt to attain the best of both methods in a linearly constrained scenario. The proposed algorithm was tested in a simple adaptive beamforming application, where the expected better performance was demonstrated.","PeriodicalId":197154,"journal":{"name":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2008.4641656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a constrained version of a recently proposed generalized data windowing scheme applied to the conjugate gradient algorithm. This scheme combines two types of data windowing, the finite-data sliding window and the exponentially weighted data window, in an attempt to attain the best of both methods in a linearly constrained scenario. The proposed algorithm was tested in a simple adaptive beamforming application, where the expected better performance was demonstrated.
约束广义数据加窗共轭梯度算法
本文介绍了最近提出的一种应用于共轭梯度算法的广义数据加窗方案的约束版本。该方案结合了两种类型的数据窗口,有限数据滑动窗口和指数加权数据窗口,试图在线性约束场景中达到两种方法的最佳效果。在一个简单的自适应波束形成应用中对该算法进行了测试,证明了预期的更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信