EEG Analysis Using HHT: One Step Toward Automatic Drowsiness Scoring

H. Sharabaty, B. Jammes, D. Esteve
{"title":"EEG Analysis Using HHT: One Step Toward Automatic Drowsiness Scoring","authors":"H. Sharabaty, B. Jammes, D. Esteve","doi":"10.1109/WAINA.2008.271","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm for automatic location of alpha and theta waves in electroencephalogram. This algorithm is a part of developments that aim to process EEG and electroocculogram in order to estimate the drowsiness level of active subjects.. Our algorithm is based on a method recently developed to analyse non-stationary signals: Hilbert Huang transform (HHT). This transform proposes to decompose multi-modal signals into a sum of mono- contribution functions called intrinsic mode functions, then to use the Hilbert transform to compute the instantaneous frequency of each IMF. After a brief review of HHT principles, we propose a qualitative analysis of Hilbert transform accuracy and a method to decrease computation errors that appears when amplitude of the analysed signal is small. The last section of this paper presents the algorithm proposed to locate alpha and theta waves and preliminary results.","PeriodicalId":170418,"journal":{"name":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2008.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This paper proposes an algorithm for automatic location of alpha and theta waves in electroencephalogram. This algorithm is a part of developments that aim to process EEG and electroocculogram in order to estimate the drowsiness level of active subjects.. Our algorithm is based on a method recently developed to analyse non-stationary signals: Hilbert Huang transform (HHT). This transform proposes to decompose multi-modal signals into a sum of mono- contribution functions called intrinsic mode functions, then to use the Hilbert transform to compute the instantaneous frequency of each IMF. After a brief review of HHT principles, we propose a qualitative analysis of Hilbert transform accuracy and a method to decrease computation errors that appears when amplitude of the analysed signal is small. The last section of this paper presents the algorithm proposed to locate alpha and theta waves and preliminary results.
利用HHT进行脑电图分析:迈向自动睡意评分的一步
提出了一种脑电图中α波和θ波的自动定位算法。该算法是对脑电和眼电图进行处理以估计活跃受试者的困倦程度的研究进展的一部分。我们的算法基于最近开发的一种分析非平稳信号的方法:希尔伯特黄变换(HHT)。该变换建议将多模态信号分解为称为内禀模态函数的单贡献函数和,然后使用希尔伯特变换计算每个IMF的瞬时频率。在简要回顾HHT原理后,我们提出了一种定性分析希尔伯特变换精度的方法,并提出了一种减小分析信号幅值较小时出现的计算误差的方法。本文的最后一节给出了所提出的定位α波和θ波的算法和初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信