Determining the Training Window for Small Sample Size Classification with Concept Drift

I. Žliobaitė, L. Kuncheva
{"title":"Determining the Training Window for Small Sample Size Classification with Concept Drift","authors":"I. Žliobaitė, L. Kuncheva","doi":"10.1109/ICDMW.2009.20","DOIUrl":null,"url":null,"abstract":"We consider classification of sequential data in the presence of frequent and abrupt concept changes. The current practice is to use the data after the change to train a new classifier. However, if the window with the new data is too small, the classifier will be undertrained and hence less accurate that the \"old'' classifier. Here we propose a method (called WR*) for resizing the training window after detecting a concept change. Experiments with synthetic and real data demonstrate the advantages of WR* over other window resizing methods.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We consider classification of sequential data in the presence of frequent and abrupt concept changes. The current practice is to use the data after the change to train a new classifier. However, if the window with the new data is too small, the classifier will be undertrained and hence less accurate that the "old'' classifier. Here we propose a method (called WR*) for resizing the training window after detecting a concept change. Experiments with synthetic and real data demonstrate the advantages of WR* over other window resizing methods.
基于概念漂移的小样本分类训练窗口的确定
我们考虑序列数据的分类在存在频繁和突然的概念变化。目前的做法是使用更改后的数据来训练新的分类器。然而,如果新数据的窗口太小,分类器将被训练不足,因此不如“旧”分类器准确。在这里,我们提出了一种方法(称为WR*),用于在检测到概念变化后调整训练窗口的大小。合成数据和真实数据的实验证明了WR*方法相对于其他窗口大小调整方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信