The exploration/exploitation trade-off in Reinforcement Learning for dialogue management

S. Varges, G. Riccardi, S. Quarteroni, A. Ivanov
{"title":"The exploration/exploitation trade-off in Reinforcement Learning for dialogue management","authors":"S. Varges, G. Riccardi, S. Quarteroni, A. Ivanov","doi":"10.1109/ASRU.2009.5373260","DOIUrl":null,"url":null,"abstract":"Conversational systems use deterministic rules that trigger actions such as requests for confirmation or clarification. More recently, Reinforcement Learning and (Partially Observable) Markov Decision Processes have been proposed for this task. In this paper, we investigate action selection strategies for dialogue management, in particular the exploration/exploitation trade-off and its impact on final reward (i.e. the session reward after optimization has ended) and lifetime reward (i.e. the overall reward accumulated over the learner's lifetime). We propose to use interleaved exploitation sessions as a learning methodology to assess the reward obtained from the current policy. The experiments show a statistically significant difference in final reward of exploitation-only sessions between a system that optimizes lifetime reward and one that maximizes the reward of the final policy.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Conversational systems use deterministic rules that trigger actions such as requests for confirmation or clarification. More recently, Reinforcement Learning and (Partially Observable) Markov Decision Processes have been proposed for this task. In this paper, we investigate action selection strategies for dialogue management, in particular the exploration/exploitation trade-off and its impact on final reward (i.e. the session reward after optimization has ended) and lifetime reward (i.e. the overall reward accumulated over the learner's lifetime). We propose to use interleaved exploitation sessions as a learning methodology to assess the reward obtained from the current policy. The experiments show a statistically significant difference in final reward of exploitation-only sessions between a system that optimizes lifetime reward and one that maximizes the reward of the final policy.
对话管理中强化学习的探索/利用权衡
会话系统使用确定性规则来触发诸如确认或澄清请求之类的操作。最近,强化学习和(部分可观察的)马尔可夫决策过程被提出用于这项任务。在本文中,我们研究了对话管理的行动选择策略,特别是探索/利用权衡及其对最终奖励(即优化结束后的会话奖励)和终身奖励(即学习者一生积累的总体奖励)的影响。我们建议使用交错开发会话作为一种学习方法来评估从当前政策中获得的奖励。实验表明,在优化终身奖励的系统和最大化最终策略奖励的系统之间,仅利用会话的最终奖励在统计上有显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信