{"title":"On the limitations of the chimera graph topology in using analog quantum computers","authors":"D. Vert, Renaud Sirdey, Stéphane Louise","doi":"10.1145/3310273.3322830","DOIUrl":null,"url":null,"abstract":"This paper investigates the possibility of using an analog quantum computer as commercialized by D-Wave to solve large QUBO problems by means of a single invocation of the quantum annealer. Indeed this machine solves a spin glass problem with programmable coefficients but subject to quite strong topology restrictions on the set of non-zero coefficients. Rather than mapping problem variables onto multiple qbits, an approach which requires many invocations of the annealer to solve small size problems, it is tempting to investigate the existence of sparse relaxations compliant with the qbits interconnection topology of the machine, hence solvable in one invocation of the annealing oracle, but still providing good-quality solutions to the original problem. This paper provides an experimental setup which aims to determine whether or not such convenient relaxations do exist or, rather, are easy to find. Our experiments suggest that it is not the case and, therefore, that solving even moderate size arbitrary problems with a single call to a quantum annealer is not possible at least within the constraints of the so-called Chimera topology. We conclude the paper with a number of perspectives that this results imply on the design of heuristics taking profit of a quantum annealing oracle to solve large scale problems.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3322830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
This paper investigates the possibility of using an analog quantum computer as commercialized by D-Wave to solve large QUBO problems by means of a single invocation of the quantum annealer. Indeed this machine solves a spin glass problem with programmable coefficients but subject to quite strong topology restrictions on the set of non-zero coefficients. Rather than mapping problem variables onto multiple qbits, an approach which requires many invocations of the annealer to solve small size problems, it is tempting to investigate the existence of sparse relaxations compliant with the qbits interconnection topology of the machine, hence solvable in one invocation of the annealing oracle, but still providing good-quality solutions to the original problem. This paper provides an experimental setup which aims to determine whether or not such convenient relaxations do exist or, rather, are easy to find. Our experiments suggest that it is not the case and, therefore, that solving even moderate size arbitrary problems with a single call to a quantum annealer is not possible at least within the constraints of the so-called Chimera topology. We conclude the paper with a number of perspectives that this results imply on the design of heuristics taking profit of a quantum annealing oracle to solve large scale problems.