Analisis Automorfisma Graf Pembagi-nol dari Ring Komutatif dengan Elemen Satuan

Kurniawan Sugiarto, Mamika Ujianita Romdhini, Ni Wayan Switrayni
{"title":"Analisis Automorfisma Graf Pembagi-nol dari Ring Komutatif dengan Elemen Satuan","authors":"Kurniawan Sugiarto, Mamika Ujianita Romdhini, Ni Wayan Switrayni","doi":"10.29303/EMJ.V1I1.11","DOIUrl":null,"url":null,"abstract":"Zero-divisor graphs of a commutative ring with identity has 3 specific simple forms, namely star zero-divisor graph, complete zero-divisor graph and complete bipartite zero-divisor graph. Graph automorphism is one of the interesting concepts in graph theory . Automorphism of  graph G is an isomorphism from graph G to itself. In other words, an automorphism of a graph G is a permutation φ of  the set points V(G) which has the property that (x,y) in E(G)  if and only if (φ(x),φ(y)) in E(G), i.e. φ preserves adjacency.This study aims to analyze the form of zero-divisor graph automorphisms of a commutative ring with identity formed. The method used in this study was taking sampel of each zero-divisor graph to represent each graph. Thus, pattern and shape of automorphism of each graph can be determined. Based on the results of this study, a star zero-divisor graph with pattern K_1,(p-1), where p is prime, has (p-1)! automorphisms, a complete zero-divisor graph with pattern K_(p-1), where p is prime, has (p-1)!  automorphisms, and a complete bipartite zero-divisor graph with pattern K_(p-1),(q-1), where p is prime, has (p-1)!(q-1)! automorphisms, when p not equals to q  and 2((p-1)!(q-1)!) automorphisms  when p=q.","PeriodicalId":281429,"journal":{"name":"EIGEN MATHEMATICS JOURNAL","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIGEN MATHEMATICS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/EMJ.V1I1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Zero-divisor graphs of a commutative ring with identity has 3 specific simple forms, namely star zero-divisor graph, complete zero-divisor graph and complete bipartite zero-divisor graph. Graph automorphism is one of the interesting concepts in graph theory . Automorphism of  graph G is an isomorphism from graph G to itself. In other words, an automorphism of a graph G is a permutation φ of  the set points V(G) which has the property that (x,y) in E(G)  if and only if (φ(x),φ(y)) in E(G), i.e. φ preserves adjacency.This study aims to analyze the form of zero-divisor graph automorphisms of a commutative ring with identity formed. The method used in this study was taking sampel of each zero-divisor graph to represent each graph. Thus, pattern and shape of automorphism of each graph can be determined. Based on the results of this study, a star zero-divisor graph with pattern K_1,(p-1), where p is prime, has (p-1)! automorphisms, a complete zero-divisor graph with pattern K_(p-1), where p is prime, has (p-1)!  automorphisms, and a complete bipartite zero-divisor graph with pattern K_(p-1),(q-1), where p is prime, has (p-1)!(q-1)! automorphisms, when p not equals to q  and 2((p-1)!(q-1)!) automorphisms  when p=q.
具有恒等交换环的零因子图有3种具体的简单形式,即星型零因子图、完全零因子图和完全二部零因子图。图自同构是图论中一个有趣的概念。图G的自同构是图G到自身的同构。换句话说,图G的自同构是集合点V(G)的一个置换φ,它具有E(G)中的(x,y)当且仅当E(G)中的(φ(x),φ(y)),即φ保持邻接性。本文的目的是分析具有单位元的交换环的零因子图自同构的形式。本研究采用的方法是取每个零因子图的样本来表示每个图。从而可以确定每个图的自同构的模式和形状。基于本研究的结果,一个模式为K_1,(p-1)的星型零因子图,其中p为素数,具有(p-1)!自同构,具有模式K_(p-1)的完全零因子图,其中p为素数,具有(p-1)!一个模式K_(p-1),(q-1)的完备二部零因子图,其中p为素数,有(p-1)!(q-1)!p不等于q时的自同构和p=q时的2((p-1)!(q-1)!)自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信