Automatic Brain MRI Slices Classification Using Hybrid Technique

A. F. Mahmood, Ameen Mohammed Abd-Alsalam
{"title":"Automatic Brain MRI Slices Classification Using Hybrid Technique","authors":"A. F. Mahmood, Ameen Mohammed Abd-Alsalam","doi":"10.33899/RENGJ.2014.88213","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent classification technique to identify normal and abnormal slices of the magnetic resonance human brain images(MRI). The prtoposed hybrid technique consists of four subsequent stages; namely, dimensionality reduction, preprocessing, feature extraction, and classification. In the initial stages, the enhancement and removed unwanted informationare applied to provide a more appropriate image for the subsequent automated stages. In feature extraction stage, the most efficient features like statistical, and Haar wavelet features are extracted from each slice of brain MR images. In the classification stage, initially performs classification process by utilizing Fuzzy Inference System (FIS) and secondly Feed Forward  Neural Network (FFNN) is used to classify the braintissue to normal or abnormal. The proposed automated system is tested on a data set of 572 MRI images using T1 horizontal transverse (axial) section of the brain. Hybrid method yields high sensitivity of 100%, specificity of 100% and overallaccuracy of 95.66% over FIS and FFNN. The classification result shows that the proposed hybrid techniques are robust and effective compared with other recently work. Keywords: Brain Tumor Classification; Fuzzy Inference System; Feed Forward  Neural Network; MRI .","PeriodicalId":339890,"journal":{"name":"AL Rafdain Engineering Journal","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AL Rafdain Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/RENGJ.2014.88213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents an intelligent classification technique to identify normal and abnormal slices of the magnetic resonance human brain images(MRI). The prtoposed hybrid technique consists of four subsequent stages; namely, dimensionality reduction, preprocessing, feature extraction, and classification. In the initial stages, the enhancement and removed unwanted informationare applied to provide a more appropriate image for the subsequent automated stages. In feature extraction stage, the most efficient features like statistical, and Haar wavelet features are extracted from each slice of brain MR images. In the classification stage, initially performs classification process by utilizing Fuzzy Inference System (FIS) and secondly Feed Forward  Neural Network (FFNN) is used to classify the braintissue to normal or abnormal. The proposed automated system is tested on a data set of 572 MRI images using T1 horizontal transverse (axial) section of the brain. Hybrid method yields high sensitivity of 100%, specificity of 100% and overallaccuracy of 95.66% over FIS and FFNN. The classification result shows that the proposed hybrid techniques are robust and effective compared with other recently work. Keywords: Brain Tumor Classification; Fuzzy Inference System; Feed Forward  Neural Network; MRI .
基于混合技术的脑MRI切片自动分类
提出了一种用于人脑核磁共振图像正常与异常切片识别的智能分类技术。所提出的混合技术包括四个后续阶段;即降维、预处理、特征提取和分类。在初始阶段,应用增强和去除不需要的信息,为随后的自动化阶段提供更合适的图像。在特征提取阶段,从每一幅脑磁共振图像中提取最有效的统计特征、哈尔小波特征等特征。在分类阶段,首先利用模糊推理系统(FIS)进行分类处理,然后利用前馈神经网络(FFNN)对脑组织进行正常和异常分类。所提出的自动化系统在572张MRI图像的数据集上进行了测试,这些图像使用大脑的T1水平横向(轴向)切片。与FIS和FFNN相比,混合方法的灵敏度为100%,特异性为100%,总体准确率为95.66%。分类结果表明,该方法具有较好的鲁棒性和有效性。关键词:脑肿瘤分类;模糊推理系统;前馈神经网络;核磁共振成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信