Learning Domain-Specific Sentiment Lexicons for Predicting Product Sales

Raymond Y. K. Lau, Wenping Zhang, P. Bruza, Kam-Fai Wong
{"title":"Learning Domain-Specific Sentiment Lexicons for Predicting Product Sales","authors":"Raymond Y. K. Lau, Wenping Zhang, P. Bruza, Kam-Fai Wong","doi":"10.1109/ICEBE.2011.55","DOIUrl":null,"url":null,"abstract":"Generic sentiment lexicons have been widely used for sentiment analysis these days. However, manually constructing sentiment lexicons is very time-consuming and it may not be feasible for certain application domains where annotation expertise is not available. One contribution of this paper is the development of a statistical learning based computational method for the automatic construction of domain-specific sentiment lexicons to enhance cross-domain sentiment analysis. Our initial experiments show that the proposed methodology can automatically generate domain-specific sentiment lexicons which contribute to improve the effectiveness of opinion retrieval at the document level. Another contribution of our work is that we show the feasibility of applying the sentiment metric derived based on the automatically constructed sentiment lexicons to predict product sales of certain product categories. Our research contributes to the development of more effective sentiment analysis system to extract business intelligence from numerous opinionated expressions posted to the Web.","PeriodicalId":231641,"journal":{"name":"2011 IEEE 8th International Conference on e-Business Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 8th International Conference on e-Business Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEBE.2011.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Generic sentiment lexicons have been widely used for sentiment analysis these days. However, manually constructing sentiment lexicons is very time-consuming and it may not be feasible for certain application domains where annotation expertise is not available. One contribution of this paper is the development of a statistical learning based computational method for the automatic construction of domain-specific sentiment lexicons to enhance cross-domain sentiment analysis. Our initial experiments show that the proposed methodology can automatically generate domain-specific sentiment lexicons which contribute to improve the effectiveness of opinion retrieval at the document level. Another contribution of our work is that we show the feasibility of applying the sentiment metric derived based on the automatically constructed sentiment lexicons to predict product sales of certain product categories. Our research contributes to the development of more effective sentiment analysis system to extract business intelligence from numerous opinionated expressions posted to the Web.
学习用于预测产品销售的特定领域情感词汇
通用情感词汇在情感分析中得到了广泛应用。然而,手动构建情感词典非常耗时,并且对于没有注释专业知识的某些应用程序领域可能不可行。本文的一个贡献是开发了一种基于统计学习的计算方法,用于自动构建特定领域的情感词汇,以增强跨领域的情感分析。我们的初步实验表明,所提出的方法可以自动生成特定于领域的情感词汇,从而有助于提高文档级意见检索的有效性。我们的工作的另一个贡献是我们展示了应用基于自动构建的情感词典派生的情感度量来预测某些产品类别的产品销售的可行性。我们的研究有助于开发更有效的情感分析系统,从发布到网络上的大量固执己见的表达中提取商业智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信