H. Rastegarfar, Kamran Keykhosravi, K. Szczerba, E. Agrell, L. LaComb, M. Glick
{"title":"Optical circuit granularity impact in TCP-dominant hybrid data center networks","authors":"H. Rastegarfar, Kamran Keykhosravi, K. Szczerba, E. Agrell, L. LaComb, M. Glick","doi":"10.1109/ICCNC.2017.7876147","DOIUrl":null,"url":null,"abstract":"Hybrid networking, based on electronic packet switching and optical circuit switching, has been proposed to resolve the existing switching bottlenecks in data centers in an energy-efficient and cost-effective fashion. We consider the problem of resource provisioning in hybrid data centers in terms of optical circuit switching capacity and granularity. The number of fibers connected to server racks, the number of wavelengths per fiber, and the ratio of capacity provided by the optical circuit-switched portion of the network to that of the electronic packet-switched portion are crucial design parameters to be optimized during the data center planning phase. These parameters in conjunction with the additive-increase, multiplicative-decrease (AIMD) congestion control mechanism of the Transmission Control Protocol (TCP) pose a significant impact on data center network performance. In this paper, we examine the combined impact of optical bandwidth settings and TCP dynamics using event-driven simulations. Our analysis reveals the strong dependence of overall network throughput on channel capacity (i.e., the bit rate per wavelength channel) and points to the advantages of optical bandwidth consolidation employing higher-order modulation formats.","PeriodicalId":135028,"journal":{"name":"2017 International Conference on Computing, Networking and Communications (ICNC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2017.7876147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Hybrid networking, based on electronic packet switching and optical circuit switching, has been proposed to resolve the existing switching bottlenecks in data centers in an energy-efficient and cost-effective fashion. We consider the problem of resource provisioning in hybrid data centers in terms of optical circuit switching capacity and granularity. The number of fibers connected to server racks, the number of wavelengths per fiber, and the ratio of capacity provided by the optical circuit-switched portion of the network to that of the electronic packet-switched portion are crucial design parameters to be optimized during the data center planning phase. These parameters in conjunction with the additive-increase, multiplicative-decrease (AIMD) congestion control mechanism of the Transmission Control Protocol (TCP) pose a significant impact on data center network performance. In this paper, we examine the combined impact of optical bandwidth settings and TCP dynamics using event-driven simulations. Our analysis reveals the strong dependence of overall network throughput on channel capacity (i.e., the bit rate per wavelength channel) and points to the advantages of optical bandwidth consolidation employing higher-order modulation formats.