{"title":"Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity","authors":"Yuxia Guo, Shaolong Peng","doi":"10.3934/cpaa.2022037","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we consider the following general pseudo-relativistic Schrödinger equation with indefinite nonlinearities:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ (-\\Delta+m^{2})^{s}u = a(x_1)f\\left(u,\\nabla u\\right),\\quad {\\rm{in}} \\,\\,\\mathbb R^{N}, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ s\\in(0,1) $\\end{document}</tex-math></inline-formula>, mass <inline-formula><tex-math id=\"M2\">\\begin{document}$ m>0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M3\">\\begin{document}$ a $\\end{document}</tex-math></inline-formula> is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we consider the following general pseudo-relativistic Schrödinger equation with indefinite nonlinearities:
where \begin{document}$ s\in(0,1) $\end{document}, mass \begin{document}$ m>0 $\end{document} and \begin{document}$ a $\end{document} is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.
In this paper, we consider the following general pseudo-relativistic Schrödinger equation with indefinite nonlinearities: \begin{document}$ (-\Delta+m^{2})^{s}u = a(x_1)f\left(u,\nabla u\right),\quad {\rm{in}} \,\,\mathbb R^{N}, $\end{document} where \begin{document}$ s\in(0,1) $\end{document}, mass \begin{document}$ m>0 $\end{document} and \begin{document}$ a $\end{document} is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.