Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, Yunxin Liu
{"title":"Flexible high-resolution object detection on edge devices with tunable latency","authors":"Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, Yunxin Liu","doi":"10.1145/3447993.3483274","DOIUrl":null,"url":null,"abstract":"Object detection is a fundamental building block of video analytics applications. While Neural Networks (NNs)-based object detection models have shown excellent accuracy on benchmark datasets, they are not well positioned for high-resolution images inference on resource-constrained edge devices. Common approaches, including down-sampling inputs and scaling up neural networks, fall short of adapting to video content changes and various latency requirements. This paper presents Remix, a flexible framework for high-resolution object detection on edge devices. Remix takes as input a latency budget, and come up with an image partition and model execution plan which runs off-the-shelf neural networks on non-uniformly partitioned image blocks. As a result, it maximizes the overall detection accuracy by allocating various amount of compute power onto different areas of an image. We evaluate Remix on public dataset as well as real-world videos collected by ourselves. Experimental results show that Remix can either improve the detection accuracy by 18%-120% for a given latency budget, or achieve up to 8.1× inference speedup with accuracy on par with the state-of-the-art NNs.","PeriodicalId":177431,"journal":{"name":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447993.3483274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
Object detection is a fundamental building block of video analytics applications. While Neural Networks (NNs)-based object detection models have shown excellent accuracy on benchmark datasets, they are not well positioned for high-resolution images inference on resource-constrained edge devices. Common approaches, including down-sampling inputs and scaling up neural networks, fall short of adapting to video content changes and various latency requirements. This paper presents Remix, a flexible framework for high-resolution object detection on edge devices. Remix takes as input a latency budget, and come up with an image partition and model execution plan which runs off-the-shelf neural networks on non-uniformly partitioned image blocks. As a result, it maximizes the overall detection accuracy by allocating various amount of compute power onto different areas of an image. We evaluate Remix on public dataset as well as real-world videos collected by ourselves. Experimental results show that Remix can either improve the detection accuracy by 18%-120% for a given latency budget, or achieve up to 8.1× inference speedup with accuracy on par with the state-of-the-art NNs.