WNPWR: Web navigation prediction framework for webpage recommendation

D. Sejal, T. Kamalakant, V. Tejaswi, Dinesh Anvekar, K. Venugopal, S. Iyengar, L. Patnaik
{"title":"WNPWR: Web navigation prediction framework for webpage recommendation","authors":"D. Sejal, T. Kamalakant, V. Tejaswi, Dinesh Anvekar, K. Venugopal, S. Iyengar, L. Patnaik","doi":"10.1109/ReTIS.2015.7232864","DOIUrl":null,"url":null,"abstract":"Huge amount of user request data is generated in web-log. Predicting users' future requests based on previously visited pages is important for web page recommendation, reduction of latency, on-line advertising etc. These applications compromise with prediction accuracy and modelling complexity. we propose a Web Navigation Prediction Framework for webpage Recommendation(WNPWR) which creates and generates a classifier based on sessions as training examples. As sessions are used as training examples, they are created by calculating average time on visiting web pages rather than traditional method which uses 30 minutes as default timeout. This paper uses standard benchmark datasets to analyze and compare our framework with two-tier prediction framework. Simulation results shows that our generated classifier framework WNPWR outperforms two-tier prediction framework in prediction accuracy and time.","PeriodicalId":161306,"journal":{"name":"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReTIS.2015.7232864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Huge amount of user request data is generated in web-log. Predicting users' future requests based on previously visited pages is important for web page recommendation, reduction of latency, on-line advertising etc. These applications compromise with prediction accuracy and modelling complexity. we propose a Web Navigation Prediction Framework for webpage Recommendation(WNPWR) which creates and generates a classifier based on sessions as training examples. As sessions are used as training examples, they are created by calculating average time on visiting web pages rather than traditional method which uses 30 minutes as default timeout. This paper uses standard benchmark datasets to analyze and compare our framework with two-tier prediction framework. Simulation results shows that our generated classifier framework WNPWR outperforms two-tier prediction framework in prediction accuracy and time.
用于网页推荐的Web导航预测框架
在web日志中产生了大量的用户请求数据。基于之前访问过的页面来预测用户未来的请求对于网页推荐、减少延迟、在线广告等都很重要。这些应用程序损害了预测的准确性和建模的复杂性。我们提出了一个网页推荐的Web导航预测框架(WNPWR),该框架基于会话作为训练样例创建并生成分类器。当会话被用作训练示例时,它们是通过计算访问网页的平均时间来创建的,而不是使用30分钟作为默认超时的传统方法。本文使用标准的基准数据集来分析和比较我们的框架和两层预测框架。仿真结果表明,我们生成的分类器框架WNPWR在预测精度和预测时间上都优于两层预测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信