A Local-Global Metric Learning Method for Facial Expression Animation

Pengcheng Gao, Bin Huang, Jiayi Lyu, Haifeng Ma, Jian Xue
{"title":"A Local-Global Metric Learning Method for Facial Expression Animation","authors":"Pengcheng Gao, Bin Huang, Jiayi Lyu, Haifeng Ma, Jian Xue","doi":"10.1109/MIPR54900.2022.00046","DOIUrl":null,"url":null,"abstract":"Facial expression animation plays an important role in character animation. The Expression Blendshape Model (EBM) provides a simple representation of various expressions through a linear combination of base blendshapes with expression coefficients. However, it is challenging to distinguish subtle expression changes. In this paper, we propose a method that combines local features and global features to regress the expression coefficients. Furthermore, local metric leaning (LML) and global metric learning (GML) are proposed to enhance the recognizability of cross-individual expression features. Specifically, the LML increases the feature distance of each blendshape that appears or disappears from the perspective of local representation, resulting in better capture of local appearance changes, while the GML raises feature distance between neutral and emotional expression in the high dimensional feature space from the global perspective. Experimental results and feature visualizations on the FEAFA dataset show the effectiveness of local and global metric learning.","PeriodicalId":228640,"journal":{"name":"2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR54900.2022.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Facial expression animation plays an important role in character animation. The Expression Blendshape Model (EBM) provides a simple representation of various expressions through a linear combination of base blendshapes with expression coefficients. However, it is challenging to distinguish subtle expression changes. In this paper, we propose a method that combines local features and global features to regress the expression coefficients. Furthermore, local metric leaning (LML) and global metric learning (GML) are proposed to enhance the recognizability of cross-individual expression features. Specifically, the LML increases the feature distance of each blendshape that appears or disappears from the perspective of local representation, resulting in better capture of local appearance changes, while the GML raises feature distance between neutral and emotional expression in the high dimensional feature space from the global perspective. Experimental results and feature visualizations on the FEAFA dataset show the effectiveness of local and global metric learning.
人脸表情动画的局部-全局度量学习方法
面部表情动画在人物动画中占有重要的地位。表达式混合形状模型(EBM)通过基本混合形状与表达式系数的线性组合提供了各种表达式的简单表示。然而,识别细微的表情变化是一项挑战。本文提出了一种结合局部特征和全局特征的表达系数回归方法。在此基础上,提出了局部度量学习(LML)和全局度量学习(GML)来提高跨个体表达特征的可识别性。具体而言,LML从局部表示的角度增加了每个出现或消失的混合形状的特征距离,从而更好地捕捉到局部外观变化,而GML从全局角度提高了高维特征空间中中性和情绪表达之间的特征距离。FEAFA数据集的实验结果和特征可视化显示了局部和全局度量学习的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信