Best basis algorithm for orthonormal shift-invariant trigonometric decomposition

I. Cohen, S. Raz, D. Malah, I. Schnitzer
{"title":"Best basis algorithm for orthonormal shift-invariant trigonometric decomposition","authors":"I. Cohen, S. Raz, D. Malah, I. Schnitzer","doi":"10.1109/DSPWS.1996.555546","DOIUrl":null,"url":null,"abstract":"Adaptive signal representations in overcomplete libraries of waveforms have been widely used. The local cosine decomposition of Coifman and Wickerhauser (see IEEE Trans. Inf. Th., vol.38, no.3, p.713-18, 1992) is modified by incorporating two degrees of freedom that increase the adaptability of the best basis. These are relative shifts between resolution levels and adaptive polarity foldings. The resultant expansion is shift-invariant, and yields adaptive time-frequency distributions which are characterized by high resolution, high concentration and suppressed cross-terms associated with the Wigner distribution.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Adaptive signal representations in overcomplete libraries of waveforms have been widely used. The local cosine decomposition of Coifman and Wickerhauser (see IEEE Trans. Inf. Th., vol.38, no.3, p.713-18, 1992) is modified by incorporating two degrees of freedom that increase the adaptability of the best basis. These are relative shifts between resolution levels and adaptive polarity foldings. The resultant expansion is shift-invariant, and yields adaptive time-frequency distributions which are characterized by high resolution, high concentration and suppressed cross-terms associated with the Wigner distribution.
正交移不变三角函数分解的最佳基算法
自适应信号表示在过完备的波形库中得到了广泛的应用。Coifman和Wickerhauser的局部余弦分解(参见IEEE译)。正,Th。第38卷,没有。3, p.713-18, 1992)通过加入两个自由度来增加最佳基础的适应性而加以修正。这些是分辨率水平和自适应极性折叠之间的相对变化。由此产生的扩展是平移不变的,并产生自适应时频分布,其特点是高分辨率,高浓度和抑制与Wigner分布相关的交叉项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信