Automatic Classification of Soot Propensity in Flames Using Image Processing and Machine Learning

A. Rodríguez, A. Diomedi, J. Portilla, Hugo O. Garcés, G. Carvajal
{"title":"Automatic Classification of Soot Propensity in Flames Using Image Processing and Machine Learning","authors":"A. Rodríguez, A. Diomedi, J. Portilla, Hugo O. Garcés, G. Carvajal","doi":"10.1109/CHILECON47746.2019.8988106","DOIUrl":null,"url":null,"abstract":"This paper describes and evaluates different ap- proaches for determining the soot propensity of an axisymmetric laminar diffusion flame with respect to its smoke point. Using a training dataset of images of flames captured in laboratory conditions and labeled according to Line-Of-Sight Attenuation (LOSA) measurements, we trained different classifiers for deter- mining the soot propensity of flames using images in a testing dataset. We evaluate a traditional classifier based on Support Vector Machine (SVM), combined with dimensionality reduction techniques and compare the results with different architectures of Convolutional Neural Networks (CNNs). Experimental results in terms of classification performance and inference time set the proposed classifiers as a promising solution for non-invasive and low-cost instrumentation for characterizing the status of combustion flames in industrial settings.","PeriodicalId":223855,"journal":{"name":"2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHILECON47746.2019.8988106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes and evaluates different ap- proaches for determining the soot propensity of an axisymmetric laminar diffusion flame with respect to its smoke point. Using a training dataset of images of flames captured in laboratory conditions and labeled according to Line-Of-Sight Attenuation (LOSA) measurements, we trained different classifiers for deter- mining the soot propensity of flames using images in a testing dataset. We evaluate a traditional classifier based on Support Vector Machine (SVM), combined with dimensionality reduction techniques and compare the results with different architectures of Convolutional Neural Networks (CNNs). Experimental results in terms of classification performance and inference time set the proposed classifiers as a promising solution for non-invasive and low-cost instrumentation for characterizing the status of combustion flames in industrial settings.
基于图像处理和机器学习的火焰煤烟倾向自动分类
本文描述并评价了确定轴对称层流扩散火焰烟灰倾向性的不同方法。使用在实验室条件下捕获并根据视距衰减(LOSA)测量标记的火焰图像的训练数据集,我们训练了不同的分类器,以使用测试数据集中的图像来阻止-挖掘火焰的烟灰倾向。我们评估了一种基于支持向量机(SVM)的传统分类器,结合降维技术,并比较了不同结构的卷积神经网络(cnn)的结果。在分类性能和推理时间方面的实验结果表明,所提出的分类器是一种有前途的解决方案,用于无创和低成本的仪器来表征工业环境中燃烧火焰的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信