Histogram-Based Training Initialisation of Hidden Markov Models for Human Action Recognition

Z. Moghaddam, M. Piccardi
{"title":"Histogram-Based Training Initialisation of Hidden Markov Models for Human Action Recognition","authors":"Z. Moghaddam, M. Piccardi","doi":"10.1109/AVSS.2010.25","DOIUrl":null,"url":null,"abstract":"Human action recognition is often addressed by use oflatent-state models such as the hidden Markov model andsimilar graphical models. As such models requireExpectation-Maximisation training, arbitrary choicesmust be made for training initialisation, with major impacton the final recognition accuracy. In this paper, wepropose a histogram-based deterministic initialisation andcompare it with both random and a time-baseddeterministic initialisations. Experiments on a humanaction dataset show that the accuracy of the proposedmethod proved higher than that of the other testedmethods.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"550 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Human action recognition is often addressed by use oflatent-state models such as the hidden Markov model andsimilar graphical models. As such models requireExpectation-Maximisation training, arbitrary choicesmust be made for training initialisation, with major impacton the final recognition accuracy. In this paper, wepropose a histogram-based deterministic initialisation andcompare it with both random and a time-baseddeterministic initialisations. Experiments on a humanaction dataset show that the accuracy of the proposedmethod proved higher than that of the other testedmethods.
基于直方图的隐马尔可夫模型训练初始化人类动作识别
人类行为识别通常通过使用平面状态模型,如隐马尔可夫模型和类似的图形模型来解决。由于这些模型需要期望最大化训练,因此必须对训练初始化进行任意选择,这对最终的识别准确性有重大影响。在本文中,我们提出了一种基于直方图的确定性初始化,并将其与随机初始化和基于时间的确定性初始化进行了比较。在人体动作数据集上的实验表明,该方法的准确率高于其他测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信