Optimized Skeleton graph based CNN for Human Abnormal Detection in Video Streams

Bhagya Jyothi K, Vasudeva
{"title":"Optimized Skeleton graph based CNN for Human Abnormal Detection in Video Streams","authors":"Bhagya Jyothi K, Vasudeva","doi":"10.55011/staiqc.2022.2102","DOIUrl":null,"url":null,"abstract":"Human Action Recognition (HAR) is the process of understanding human actions and behavior. HAR has a broad range of applications, and it has been focused on increasing the attention in various domain of computed vision. Abnormal detection from video stream is vigorous to guarantee the security in both outside spaces with the internal. Furthermore, the abnormal actions are really infrequent and rare, which makes the supervision process more challenging and difficult. In this research, skeleton graph-based Convolutional Neural Network (CNN) is devised for human abnormal activity detection. Here, the skeleton graph-based CNN (Skeleton graph_CNN) is devised based on the concept of classical convolution and skeleton graph generation. The human action recognition classifies the human actions into normal and abnormal class. The abnormal actions from the recognized outcome are detected with Skeleton graph_CNN, which provides the various actions of human as an output. The Skeleton graph_CNNgenerates the skeleton shaped human structure by connecting the joints within the frame to consecutive frames. Moreover, the HAR is carried out using IITB-Corridor Dataset based on metrics, such as testing accuracy of 0.961, sensitivity of 0.956 and specificity of 0.960, correspondingly.","PeriodicalId":231409,"journal":{"name":"Sparklinglight Transactions on Artificial Intelligence and Quantum Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sparklinglight Transactions on Artificial Intelligence and Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55011/staiqc.2022.2102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human Action Recognition (HAR) is the process of understanding human actions and behavior. HAR has a broad range of applications, and it has been focused on increasing the attention in various domain of computed vision. Abnormal detection from video stream is vigorous to guarantee the security in both outside spaces with the internal. Furthermore, the abnormal actions are really infrequent and rare, which makes the supervision process more challenging and difficult. In this research, skeleton graph-based Convolutional Neural Network (CNN) is devised for human abnormal activity detection. Here, the skeleton graph-based CNN (Skeleton graph_CNN) is devised based on the concept of classical convolution and skeleton graph generation. The human action recognition classifies the human actions into normal and abnormal class. The abnormal actions from the recognized outcome are detected with Skeleton graph_CNN, which provides the various actions of human as an output. The Skeleton graph_CNNgenerates the skeleton shaped human structure by connecting the joints within the frame to consecutive frames. Moreover, the HAR is carried out using IITB-Corridor Dataset based on metrics, such as testing accuracy of 0.961, sensitivity of 0.956 and specificity of 0.960, correspondingly.
基于CNN优化骨架图的视频流人体异常检测
人类行为识别(HAR)是理解人类行为和行为的过程。HAR具有广泛的应用前景,在计算机视觉的各个领域受到越来越多的关注。对视频流的异常检测是强有力的,以保证外部空间和内部空间的安全。此外,异常行为确实罕见和罕见,这使得监管过程更具挑战性和难度。本研究将基于骨架图的卷积神经网络(CNN)设计用于人体异常活动检测。本文基于经典卷积和骨架图生成的概念,设计了基于骨架图的CNN (skeleton graph_CNN)。人的行为识别将人的行为分为正常和异常两类。通过Skeleton graph_CNN对识别结果中的异常动作进行检测,并提供人类的各种动作作为输出。Skeleton graph_cnn通过将帧内的关节连接到连续的帧来生成骨架形状的人体结构。采用IITB-Corridor数据集进行HAR检测,检测准确率为0.961,灵敏度为0.956,特异性为0.960。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信