{"title":"Solving some graph problems with optimal or near-optimal speedup on mesh-of-trees networks","authors":"Ming-Deh A. Huang","doi":"10.1109/SFCS.1985.52","DOIUrl":null,"url":null,"abstract":"We present a systematic approach for solving graph problems under the network models. We illustrate this approach on the mesh-of-trees networks. It is known that under the CREW PRAM model, when a undirected graph of n nodes is given by an n by n adjacency matrix, the problems of finding minimum spanning forest, connected components, and biconnected components can all be solved with optimal speedup when the number of processors p ≤ n2/log2n. We show that for these problems, the same optimal speedup can be achieved even under the much more restrictive mesh-of-trees network. We also show that for the problem of finding directed spanning forest of arbitrary digraphs and the problem of testing strong connectivity of 1-reachable digraphs, near-optimal speedup can be achieved.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
We present a systematic approach for solving graph problems under the network models. We illustrate this approach on the mesh-of-trees networks. It is known that under the CREW PRAM model, when a undirected graph of n nodes is given by an n by n adjacency matrix, the problems of finding minimum spanning forest, connected components, and biconnected components can all be solved with optimal speedup when the number of processors p ≤ n2/log2n. We show that for these problems, the same optimal speedup can be achieved even under the much more restrictive mesh-of-trees network. We also show that for the problem of finding directed spanning forest of arbitrary digraphs and the problem of testing strong connectivity of 1-reachable digraphs, near-optimal speedup can be achieved.