Inverted Generational Distance Bat Algorithm for Many-Objective Optimization Problems

I. Abbas, Q. Al-Salami
{"title":"Inverted Generational Distance Bat Algorithm for Many-Objective Optimization Problems","authors":"I. Abbas, Q. Al-Salami","doi":"10.24086/icafs2023/paper.905","DOIUrl":null,"url":null,"abstract":"Evolutionary Algorithms (EAs) can be used to solve extremely large-scale Many-Objective Optimization Problems (MOPs/I). Multi-Objective BAT Algorithm based on Inverted Generational Distance MOBAT / IGD, a dominance-decomposition bat algorithm, solves this problem. Due to the Tchebycheff Strategy leader selection process, addressing the issues concurrently inside the BAT foundation may result in rapid convergence. In this paper decomposing the MOP as a Tchebycheff Approach set simplifies it. Dominance allows leaders to scan less densely populated areas, avoiding local optima and producing a more diverse estimated Pareto front as well creating the executives archive. MOBAT/IGD was evaluated to various decomposition-based development methods utilizing 35 standard MOPs. MATLAB produced all results (R2017b).","PeriodicalId":342173,"journal":{"name":"‎4th International Conference on ‎Administrative ‎& Financial Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"‎4th International Conference on ‎Administrative ‎& Financial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24086/icafs2023/paper.905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evolutionary Algorithms (EAs) can be used to solve extremely large-scale Many-Objective Optimization Problems (MOPs/I). Multi-Objective BAT Algorithm based on Inverted Generational Distance MOBAT / IGD, a dominance-decomposition bat algorithm, solves this problem. Due to the Tchebycheff Strategy leader selection process, addressing the issues concurrently inside the BAT foundation may result in rapid convergence. In this paper decomposing the MOP as a Tchebycheff Approach set simplifies it. Dominance allows leaders to scan less densely populated areas, avoiding local optima and producing a more diverse estimated Pareto front as well creating the executives archive. MOBAT/IGD was evaluated to various decomposition-based development methods utilizing 35 standard MOPs. MATLAB produced all results (R2017b).
多目标优化问题的倒代距蝙蝠算法
进化算法(EAs)可用于求解大规模多目标优化问题(MOPs/I)。基于倒代距的多目标蝙蝠算法MOBAT / IGD是一种优势分解蝙蝠算法,解决了这一问题。由于Tchebycheff战略领导人的选择过程,在BAT基础内部同时解决问题可能会导致快速趋同。本文将MOP分解为一个Tchebycheff方法集来简化它。优势使领导者能够扫描人口密度较低的地区,避免局部最优,并产生更多样化的估计帕累托前线,以及创建高管档案。利用35种标准MOPs对MOBAT/IGD进行了基于分解的开发方法评价。MATLAB生成所有结果(R2017b)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信