Fast scene segmentation using multi-level feature selection

Yan Liu, J. Kender
{"title":"Fast scene segmentation using multi-level feature selection","authors":"Yan Liu, J. Kender","doi":"10.1109/ICME.2003.1221314","DOIUrl":null,"url":null,"abstract":"High time cost is the bottle-neck of video scene segmentation. In this paper we use a heuristic method called sort-merge feature selection to construct automatically a hierarchy of small subsets of features that are progressively more useful for segmentation. A novel combination of fastmap for dimensionality reduction and Mahalanobis distance for likelihood determination is used as induction algorithm. Because these induced feature sets from a hierarchy with increasing classification accuracy, video segments can be segmented and categorized simultaneously in a coarse-fine manner that efficiently and progressively detects and refines their temporal boundaries. We analyze the performance of these methods, and demonstrate them in the domain of long (75 minute) instructional video.","PeriodicalId":118560,"journal":{"name":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2003.1221314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

High time cost is the bottle-neck of video scene segmentation. In this paper we use a heuristic method called sort-merge feature selection to construct automatically a hierarchy of small subsets of features that are progressively more useful for segmentation. A novel combination of fastmap for dimensionality reduction and Mahalanobis distance for likelihood determination is used as induction algorithm. Because these induced feature sets from a hierarchy with increasing classification accuracy, video segments can be segmented and categorized simultaneously in a coarse-fine manner that efficiently and progressively detects and refines their temporal boundaries. We analyze the performance of these methods, and demonstrate them in the domain of long (75 minute) instructional video.
快速场景分割使用多层次的特征选择
高时间成本是视频场景分割的瓶颈。在本文中,我们使用一种称为排序合并特征选择的启发式方法来自动构建对分割更有用的小子集特征的层次结构。采用快速降维图和马氏距离相结合的方法确定似然,作为归纳算法。由于这些从层次结构中产生的特征集具有越来越高的分类精度,因此可以以粗-精的方式同时对视频片段进行分割和分类,从而有效地逐步检测和细化其时间边界。我们分析了这些方法的性能,并在长(75分钟)的教学视频领域进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信