{"title":"Impact of NLPA on SWIPT Enabled Two-Way AF Cooperative Network","authors":"Deepak Kumar, P. Singya, V. Bhatia","doi":"10.1109/VTC2021-Spring51267.2021.9448815","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the impact of nonlinear distortion on the overall system outage probability of simultaneous wireless information and power transfer enabled two-way amplify-and-forward relaying network by employing three different nonlinear power amplifier (NLPA) models such as traveling wave tube amplifier, soft envelope limiter, and solid-state power amplifier at the relay node. We consider a time-switching based protocol at the energy-constrained relay node to harvest energy and information transmission. We derive the closed-form expression of the system outage probability by utilizing the selection combining technique at the source nodes over Nakagami-m fading channels. System throughput and energy efficiency of the network are also investigated. The impact of NLPA, threshold data-rate, fading severity, and time-switching factor are highlighted on the network’s performance. Finally, the derived analytical results are validated by the Monte Carlo simulations.","PeriodicalId":194840,"journal":{"name":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2021-Spring51267.2021.9448815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we investigate the impact of nonlinear distortion on the overall system outage probability of simultaneous wireless information and power transfer enabled two-way amplify-and-forward relaying network by employing three different nonlinear power amplifier (NLPA) models such as traveling wave tube amplifier, soft envelope limiter, and solid-state power amplifier at the relay node. We consider a time-switching based protocol at the energy-constrained relay node to harvest energy and information transmission. We derive the closed-form expression of the system outage probability by utilizing the selection combining technique at the source nodes over Nakagami-m fading channels. System throughput and energy efficiency of the network are also investigated. The impact of NLPA, threshold data-rate, fading severity, and time-switching factor are highlighted on the network’s performance. Finally, the derived analytical results are validated by the Monte Carlo simulations.