{"title":"Pilot-less Massive MIMO TDD System with Blind Channel Estimation using Non-coherent DMPSK","authors":"M. J. L. Morales, Chen-Hu Kun, A. G. Armada","doi":"10.1109/GLOBECOM48099.2022.10000841","DOIUrl":null,"url":null,"abstract":"A novel time division duplex massive MIMO approach based on performing a blind channel estimation in the uplink using differentially encoded data and a precoding in the downlink, also with differentially encoded data, is proposed. In this system, the use of any type of explicit pilot data is completely avoided while maintaining spatial multiplexing capabilities in the downlink. We perform an analysis of the full system in terms or signal-to-interference-and-noise ratio (SINR) for the uplink and the downlink. The performance of the channel estimation using differentially encoded data is also analyzed, since it affects the performance of the downlink data transmission. A simple strategy to allocate the different users in an OFDM grid is proposed. The analysis is corroborated via numerical results and the proposed scheme is shown to outperform its coherent counterpart.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10000841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A novel time division duplex massive MIMO approach based on performing a blind channel estimation in the uplink using differentially encoded data and a precoding in the downlink, also with differentially encoded data, is proposed. In this system, the use of any type of explicit pilot data is completely avoided while maintaining spatial multiplexing capabilities in the downlink. We perform an analysis of the full system in terms or signal-to-interference-and-noise ratio (SINR) for the uplink and the downlink. The performance of the channel estimation using differentially encoded data is also analyzed, since it affects the performance of the downlink data transmission. A simple strategy to allocate the different users in an OFDM grid is proposed. The analysis is corroborated via numerical results and the proposed scheme is shown to outperform its coherent counterpart.