Grigorii Shoroshov, O. Senyukova, Dmitry Semenov, D. Sharova
{"title":"MRI Quality Control Algorithm Based on Image Analysis Using Convolutional and Recurrent Neural Networks","authors":"Grigorii Shoroshov, O. Senyukova, Dmitry Semenov, D. Sharova","doi":"10.1109/CBMS55023.2022.00080","DOIUrl":null,"url":null,"abstract":"MRI quality control plays a significant role in ensuring safety and quality of examinations. Most of the work in the area is devoted to the development of no-reference quality metrics. Some recent works use 2D or 3D convolutional neural networks. For this study, we collected a dataset of 363 clinical MRI sequences with known results of quality control as well as 1295 clinical MRI sequences without known results of quality control. We propose a method based on neural networks that takes into account the three-dimensional context through the use of bidirectional LSTM, as well as a pre-training method based on a prediction of no-reference quality metrics using EfficientNet convolutional neural network that allows the use of unlabeled data. The proposed method makes it possible to predict the result of quality control with ROC-AUC of almost 0.94.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
MRI quality control plays a significant role in ensuring safety and quality of examinations. Most of the work in the area is devoted to the development of no-reference quality metrics. Some recent works use 2D or 3D convolutional neural networks. For this study, we collected a dataset of 363 clinical MRI sequences with known results of quality control as well as 1295 clinical MRI sequences without known results of quality control. We propose a method based on neural networks that takes into account the three-dimensional context through the use of bidirectional LSTM, as well as a pre-training method based on a prediction of no-reference quality metrics using EfficientNet convolutional neural network that allows the use of unlabeled data. The proposed method makes it possible to predict the result of quality control with ROC-AUC of almost 0.94.