Spectral Methods for Dimensionality Reduction

L. Saul, Kilian Q. Weinberger, Fei Sha, Jihun Ham, Daniel D. Lee
{"title":"Spectral Methods for Dimensionality Reduction","authors":"L. Saul, Kilian Q. Weinberger, Fei Sha, Jihun Ham, Daniel D. Lee","doi":"10.7551/mitpress/9780262033589.003.0016","DOIUrl":null,"url":null,"abstract":"How can we search for low dimensional structure in high dimensional data? If the data is mainly confined to a low dimensional subspace, then simple linear methods can be used to discover the subspace and estimate its dimensionality. More generally, though, if the data lies on (or near) a low dimensional submanifold, then its structure may be highly nonlinear, and linear methods are bound to fail. Spectral methods have recently emerged as a powerful tool for nonlinear dimensionality reduction and manifold learning. These methods are able to reveal low dimensional structure in high dimensional data from the top or bottom eigenvectors of specially constructed matrices. To analyze data that lies on a low dimensional submanifold, the matrices are constructed from sparse weighted graphs whose vertices represent input patterns and whose edges indicate neighborhood relations. The main computations for manifold learning are based on tractable, polynomial-time optimizations, such as shortest path problems, least squares fits, semidefinite programming, and matrix diagonalization. This chapter provides an overview of unsupervised learning algorithms that can be viewed as spectral methods for linear and nonlinear dimensionality reduction.","PeriodicalId":345393,"journal":{"name":"Semi-Supervised Learning","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"291","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semi-Supervised Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7551/mitpress/9780262033589.003.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 291

Abstract

How can we search for low dimensional structure in high dimensional data? If the data is mainly confined to a low dimensional subspace, then simple linear methods can be used to discover the subspace and estimate its dimensionality. More generally, though, if the data lies on (or near) a low dimensional submanifold, then its structure may be highly nonlinear, and linear methods are bound to fail. Spectral methods have recently emerged as a powerful tool for nonlinear dimensionality reduction and manifold learning. These methods are able to reveal low dimensional structure in high dimensional data from the top or bottom eigenvectors of specially constructed matrices. To analyze data that lies on a low dimensional submanifold, the matrices are constructed from sparse weighted graphs whose vertices represent input patterns and whose edges indicate neighborhood relations. The main computations for manifold learning are based on tractable, polynomial-time optimizations, such as shortest path problems, least squares fits, semidefinite programming, and matrix diagonalization. This chapter provides an overview of unsupervised learning algorithms that can be viewed as spectral methods for linear and nonlinear dimensionality reduction.
降维的光谱方法
如何在高维数据中搜索低维结构?如果数据主要局限于低维子空间,则可以使用简单的线性方法来发现子空间并估计其维数。更一般地说,如果数据位于(或靠近)一个低维子流形上,那么它的结构可能是高度非线性的,线性方法注定会失败。谱方法最近成为非线性降维和流形学习的有力工具。这些方法能够从特殊构造的矩阵的顶部或底部特征向量揭示高维数据中的低维结构。为了分析位于低维子流形上的数据,矩阵由稀疏加权图构建,其顶点表示输入模式,其边表示邻域关系。流形学习的主要计算是基于可处理的、多项式时间的优化,如最短路径问题、最小二乘拟合、半定规划和矩阵对角化。本章提供了无监督学习算法的概述,这些算法可以被视为线性和非线性降维的谱方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信