Continuous and Complete Vascular Centerline Detection via Multi-task Attention Fusion Network (MTAFN)

Yachen Wang, Jingfan Fan, Tao Han, Heng Li, Tianyu Fu, Hong Song, Jian Yang
{"title":"Continuous and Complete Vascular Centerline Detection via Multi-task Attention Fusion Network (MTAFN)","authors":"Yachen Wang, Jingfan Fan, Tao Han, Heng Li, Tianyu Fu, Hong Song, Jian Yang","doi":"10.1109/AEMCSE50948.2020.00032","DOIUrl":null,"url":null,"abstract":"Centerline extraction is significant in coronary reconstruction, lesion detection and surgery navigation. Current pixel-wise classification methods often produce in complete and disconnected vascular map due to the lack of constraint on vessel connectivity and biased centerline localization. In this work, we formulate the centerline extraction as a centerline-based distance transformation(CDT) regression problem, which shows larger central response than conventional boundarybased distance transformation(DT). To enlarge connectivity constraint, vessel direction learning task is appended to provide connectivity contextual information. Moreover, we establish a Multi-task Attention Fusion Network to jointly learn the proposed CDT and vessel direction representation. Notably, the proposed Attention Fusion module concatenates multitask information across different paths and boosts network to converge efficiently. Finally, centerline points correspond to local maximum on learned CDT map at perpendicular vessel direction, which can be easily identified with Non-Maximum Suppression(NMS) algorithm. Experimental results show that our method yields a promising performance on vessel centerline extraction.","PeriodicalId":246841,"journal":{"name":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEMCSE50948.2020.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Centerline extraction is significant in coronary reconstruction, lesion detection and surgery navigation. Current pixel-wise classification methods often produce in complete and disconnected vascular map due to the lack of constraint on vessel connectivity and biased centerline localization. In this work, we formulate the centerline extraction as a centerline-based distance transformation(CDT) regression problem, which shows larger central response than conventional boundarybased distance transformation(DT). To enlarge connectivity constraint, vessel direction learning task is appended to provide connectivity contextual information. Moreover, we establish a Multi-task Attention Fusion Network to jointly learn the proposed CDT and vessel direction representation. Notably, the proposed Attention Fusion module concatenates multitask information across different paths and boosts network to converge efficiently. Finally, centerline points correspond to local maximum on learned CDT map at perpendicular vessel direction, which can be easily identified with Non-Maximum Suppression(NMS) algorithm. Experimental results show that our method yields a promising performance on vessel centerline extraction.
基于多任务注意融合网络(MTAFN)的连续完整血管中心线检测
中心线提取在冠状动脉重建、病变检测和手术导航中具有重要意义。由于缺乏对血管连通性的约束和中心线定位的偏差,目前的逐像素分类方法往往产生不完整和不连贯的血管图。在这项工作中,我们将中心线提取表述为基于中心线的距离变换(CDT)回归问题,它比传统的基于边界的距离变换(DT)具有更大的中心响应。为了扩大连通性约束,增加了船舶航向学习任务来提供连通性上下文信息。此外,我们建立了一个多任务注意力融合网络来共同学习所提出的CDT和船舶方向表示。值得注意的是,所提出的注意力融合模块将多任务信息跨不同路径连接起来,提高了网络的收敛效率。最后,中心线点对应于学习到的垂直船舶方向的CDT图上的局部最大值,可以很容易地用非最大值抑制(NMS)算法识别。实验结果表明,该方法在血管中心线提取上取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信