Extraction of diagnostic knowledge from clinical databases based on rough set theory

S. Tsumoto, H. Tanaka
{"title":"Extraction of diagnostic knowledge from clinical databases based on rough set theory","authors":"S. Tsumoto, H. Tanaka","doi":"10.1109/AFSS.1996.583580","DOIUrl":null,"url":null,"abstract":"A rule-induction system, called PRIMEROSE3 (probabilistic rule induction method based on rough sets version 3.0), is introduced. This program first analyzes the statistical characteristics of attribute-value pairs from training samples, then determines what kind of diagnosing model can be applied to the training samples. Then, it extracts not only classification rules for differential diagnosis, but also other medical knowledge needed for other diagnostic procedures in a selected diagnosing model. PRIMEROSE3 is evaluated on three kinds of clinical databases and the induced results are compared with domain knowledge acquired from medical experts, including classification rules. The experimental results show that our proposed method correctly not only selects a diagnosing model, but also extracts domain knowledge.","PeriodicalId":197019,"journal":{"name":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFSS.1996.583580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A rule-induction system, called PRIMEROSE3 (probabilistic rule induction method based on rough sets version 3.0), is introduced. This program first analyzes the statistical characteristics of attribute-value pairs from training samples, then determines what kind of diagnosing model can be applied to the training samples. Then, it extracts not only classification rules for differential diagnosis, but also other medical knowledge needed for other diagnostic procedures in a selected diagnosing model. PRIMEROSE3 is evaluated on three kinds of clinical databases and the induced results are compared with domain knowledge acquired from medical experts, including classification rules. The experimental results show that our proposed method correctly not only selects a diagnosing model, but also extracts domain knowledge.
基于粗糙集理论的临床数据库诊断知识提取
介绍了一种规则归纳系统PRIMEROSE3(基于粗糙集的概率规则归纳方法3.0版)。该程序首先分析来自训练样本的属性值对的统计特征,然后确定哪种诊断模型可以应用于训练样本。然后,在选定的诊断模型中,不仅提取用于鉴别诊断的分类规则,还提取其他诊断程序所需的其他医学知识。在三种临床数据库上对PRIMEROSE3进行评价,并将诱导结果与从医学专家那里获得的领域知识(包括分类规则)进行比较。实验结果表明,该方法不仅正确地选择了诊断模型,而且正确地提取了领域知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信