Camera calibration without feature extraction

L. Robert
{"title":"Camera calibration without feature extraction","authors":"L. Robert","doi":"10.1109/ICPR.1994.576411","DOIUrl":null,"url":null,"abstract":"We present an original approach to the problem of camera calibration. Contrary to classical techniques, which first extract the image features and then compute the camera parameters, we directly search for the camera parameters that best map three-dimensional points onto the image edges, characterized as maxims of the intensity gradient or zero-crossings of the Laplacian. Expressed as a one-stage optimization problem over the parameters of the camera, the whole calibration process is solved by classical iterative optimization. We describe experiments on synthetic and real data.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

We present an original approach to the problem of camera calibration. Contrary to classical techniques, which first extract the image features and then compute the camera parameters, we directly search for the camera parameters that best map three-dimensional points onto the image edges, characterized as maxims of the intensity gradient or zero-crossings of the Laplacian. Expressed as a one-stage optimization problem over the parameters of the camera, the whole calibration process is solved by classical iterative optimization. We describe experiments on synthetic and real data.
没有特征提取的摄像机校准
提出了一种新颖的摄像机标定方法。与传统的首先提取图像特征然后计算相机参数的技术相反,我们直接搜索能够将三维点映射到图像边缘的相机参数,其特征为强度梯度最大值或拉普拉斯函数的零交叉点。将整个标定过程表示为相机参数的单阶段优化问题,采用经典迭代优化方法求解。我们描述了在合成数据和真实数据上的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信