{"title":"Network Characterization and Perceptual Evaluation of Skype Mobile Videos","authors":"S. Jana, A. Pande, An Chan, P. Mohapatra","doi":"10.1109/ICCCN.2013.6614157","DOIUrl":null,"url":null,"abstract":"We characterize the performance of both video and network layer properties of Skype, the most popular video telephony application. The performance in both mobile and stationary scenarios is investigated; considering network characteristics such as packet loss, propagation delay, available bandwidth and their effects on the perceptual video quality, measured using spatial and temporal no-reference video metrics. Based on 200+ live traces, we study the performance of this mobile video telephony application. We model video quality as a function of input network parameters and derive a feed-forward Artificial-Neural-Network that accurately predicts video quality given network conditions (0.0206 ≤ MSE ≤ 0.570). The accuracy of this model improves significantly by incorporating end-user mobility as an input to the model.","PeriodicalId":207337,"journal":{"name":"2013 22nd International Conference on Computer Communication and Networks (ICCCN)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 22nd International Conference on Computer Communication and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2013.6614157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We characterize the performance of both video and network layer properties of Skype, the most popular video telephony application. The performance in both mobile and stationary scenarios is investigated; considering network characteristics such as packet loss, propagation delay, available bandwidth and their effects on the perceptual video quality, measured using spatial and temporal no-reference video metrics. Based on 200+ live traces, we study the performance of this mobile video telephony application. We model video quality as a function of input network parameters and derive a feed-forward Artificial-Neural-Network that accurately predicts video quality given network conditions (0.0206 ≤ MSE ≤ 0.570). The accuracy of this model improves significantly by incorporating end-user mobility as an input to the model.