An Empirical Study of Deep Neural Networks Models for Sentiment Classification on Movie Reviews

Oumaima Hourrane, Nouhaila Idrissi, E. Benlahmar
{"title":"An Empirical Study of Deep Neural Networks Models for Sentiment Classification on Movie Reviews","authors":"Oumaima Hourrane, Nouhaila Idrissi, E. Benlahmar","doi":"10.1109/ICSSD47982.2019.9003171","DOIUrl":null,"url":null,"abstract":"Sentiment classification is one of the new absorbing parts appeared in natural language processing with the emergence of community sites on the web. Taking advantage of the amount of information now available, research and industry have been seeking ways to automatically analyze the sentiments expressed in texts. The challenge for this task is the human language ambiguity, and also the lack of labeled data. In order to solve this issue, Deep learning models appeared to be effective due to their automatic learning capability. In this paper, we provide a comparative study on IMDB movie review dataset, we compare word embeddings methods and further deep learning models on sentiment analysis and give broad empirical outcomes for those keen on taking advantage of deep learning for sentiment analysis in real-world settings.","PeriodicalId":342806,"journal":{"name":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSD47982.2019.9003171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sentiment classification is one of the new absorbing parts appeared in natural language processing with the emergence of community sites on the web. Taking advantage of the amount of information now available, research and industry have been seeking ways to automatically analyze the sentiments expressed in texts. The challenge for this task is the human language ambiguity, and also the lack of labeled data. In order to solve this issue, Deep learning models appeared to be effective due to their automatic learning capability. In this paper, we provide a comparative study on IMDB movie review dataset, we compare word embeddings methods and further deep learning models on sentiment analysis and give broad empirical outcomes for those keen on taking advantage of deep learning for sentiment analysis in real-world settings.
电影评论情感分类的深度神经网络模型实证研究
情感分类是随着网络上社区站点的出现,自然语言处理中出现的一个新的吸收部分。利用现有的大量信息,研究和行业一直在寻找自动分析文本中表达的情感的方法。这项任务面临的挑战是人类语言的模糊性,以及缺乏标记数据。为了解决这个问题,深度学习模型由于具有自动学习能力而显得很有效。在本文中,我们对IMDB电影评论数据集进行了比较研究,我们比较了词嵌入方法和进一步的深度学习模型在情感分析方面的作用,并为那些热衷于在现实世界中利用深度学习进行情感分析的人提供了广泛的经验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信