Dirichlet Aspect Weighting: A Generalized EM Algorithm for Integrating External Data Fields with Semantically Structured Queries by Using Gradient Projection Method

A. Velivelli, Thomas S. Huang
{"title":"Dirichlet Aspect Weighting: A Generalized EM Algorithm for Integrating External Data Fields with Semantically Structured Queries by Using Gradient Projection Method","authors":"A. Velivelli, Thomas S. Huang","doi":"10.1109/ICDM.2006.55","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of document retrieval with semantically structured queries - queries where each term has a tagged field label. We introduce Dirichlet Aspect Weighting model which integrates terms from external databases into the query language model in a bayesian learning framework. For this model, the Dirichlet prior distribution is governed by parameters which depend on the number of fields in the external databases. This model needs additional examples to be augmented to the semantically structured query. These examples are obtained using pseudo relevance feedback. We formulate a loglikelihood function for the Dirichlet Aspect Weighting model and maximize it using a novel Generalized EM algorithm. Comparison of the results of Dirichlet Aspect Weighting model on TREC 2005 Genomics Track dataset with baseline methods using pseudo relevance feedback, while incorporating terms from external databases shows an improvement.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we address the problem of document retrieval with semantically structured queries - queries where each term has a tagged field label. We introduce Dirichlet Aspect Weighting model which integrates terms from external databases into the query language model in a bayesian learning framework. For this model, the Dirichlet prior distribution is governed by parameters which depend on the number of fields in the external databases. This model needs additional examples to be augmented to the semantically structured query. These examples are obtained using pseudo relevance feedback. We formulate a loglikelihood function for the Dirichlet Aspect Weighting model and maximize it using a novel Generalized EM algorithm. Comparison of the results of Dirichlet Aspect Weighting model on TREC 2005 Genomics Track dataset with baseline methods using pseudo relevance feedback, while incorporating terms from external databases shows an improvement.
Dirichlet方面加权:一种利用梯度投影法集成外部数据域和语义结构化查询的广义EM算法
在本文中,我们用语义结构化查询解决文档检索的问题——查询中每个词都有一个带标签的字段标签。在贝叶斯学习框架中引入Dirichlet方面加权模型,该模型将外部数据库中的术语集成到查询语言模型中。对于该模型,Dirichlet先验分布由参数控制,这些参数取决于外部数据库中字段的数量。该模型需要额外的示例来扩展到语义结构化查询。这些例子是使用伪相关反馈得到的。我们为Dirichlet方面加权模型制定了一个对数似然函数,并使用一种新的广义EM算法最大化它。将Dirichlet方面加权模型在TREC 2005 Genomics Track数据集上的结果与使用伪相关反馈的基线方法进行比较,并结合外部数据库中的术语,结果显示出改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信