OccBin: A Toolkit for Solving Dynamic Models with Occasionally Binding Constraints Easily

L. Guerrieri, Matteo Iacoviello
{"title":"OccBin: A Toolkit for Solving Dynamic Models with Occasionally Binding Constraints Easily","authors":"L. Guerrieri, Matteo Iacoviello","doi":"10.2139/ssrn.2466637","DOIUrl":null,"url":null,"abstract":"We describe how to adapt a first-order perturbation approach and apply it in a piecewise fashion to handle occasionally binding constraints in dynamic models. Our examples include a real business cycle model with a constraint on the level of investment and a New Keynesian model subject to the zero lower bound on nominal interest rates. We compare the piecewise linear perturbation solution with a high-quality numerical solution that can be taken to be virtually exact. The piecewise linear perturbation method can adequately capture key properties of the models we consider. A key advantage of this method is its applicability to models with a large number of state variables.","PeriodicalId":123778,"journal":{"name":"ERN: Theoretical Dynamic Models (Topic)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"415","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Theoretical Dynamic Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2466637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 415

Abstract

We describe how to adapt a first-order perturbation approach and apply it in a piecewise fashion to handle occasionally binding constraints in dynamic models. Our examples include a real business cycle model with a constraint on the level of investment and a New Keynesian model subject to the zero lower bound on nominal interest rates. We compare the piecewise linear perturbation solution with a high-quality numerical solution that can be taken to be virtually exact. The piecewise linear perturbation method can adequately capture key properties of the models we consider. A key advantage of this method is its applicability to models with a large number of state variables.
OccBin:一个解决偶尔绑定约束的动态模型的工具
我们描述了如何适应一阶摄动方法,并以分段方式应用它来处理动态模型中偶尔绑定的约束。我们的例子包括一个对投资水平有约束的真实商业周期模型和一个受名义利率下限为零约束的新凯恩斯模型。我们比较了分段线性扰动解与高质量的数值解,可以采取几乎精确。分段线性摄动法能充分捕捉所考虑模型的关键性质。该方法的一个关键优点是它适用于具有大量状态变量的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信