Fusion of Global and Local Features for Text Classification

Yifan Hou, Ge Cheng, Yun Zhang, Dongliang Zhang
{"title":"Fusion of Global and Local Features for Text Classification","authors":"Yifan Hou, Ge Cheng, Yun Zhang, Dongliang Zhang","doi":"10.1109/CACML55074.2022.00075","DOIUrl":null,"url":null,"abstract":"Text classification is an important problem in natural language processing. In this work, we propose a feature fusion model for document classification, which has excellent text representation ability. We first build a shared graph from training data sets to bring global information. Then we build individual graph for each document which maintain the word order. Finally, we get the document representation vector through attention layer. Extensive experiments show that our method performs well on three standard datasets, which illustrates the effectiveness of our model.","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text classification is an important problem in natural language processing. In this work, we propose a feature fusion model for document classification, which has excellent text representation ability. We first build a shared graph from training data sets to bring global information. Then we build individual graph for each document which maintain the word order. Finally, we get the document representation vector through attention layer. Extensive experiments show that our method performs well on three standard datasets, which illustrates the effectiveness of our model.
基于全局和局部特征融合的文本分类
文本分类是自然语言处理中的一个重要问题。在这项工作中,我们提出了一种特征融合模型用于文档分类,该模型具有出色的文本表示能力。我们首先从训练数据集构建一个共享图来获得全局信息。然后为每个文档构建维护词序的独立图。最后,通过注意层得到文档表示向量。大量的实验表明,我们的方法在三个标准数据集上表现良好,说明了我们模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信