Mayank K. Aditia, Fahiem Altaf, Moirangthem R. Singh, M. S. Burra, Chanchal Maurya, S. S. Sahoo, Soumyadev Maity
{"title":"Optimized CL-PKE with lightweight encryption for resource constrained devices","authors":"Mayank K. Aditia, Fahiem Altaf, Moirangthem R. Singh, M. S. Burra, Chanchal Maurya, S. S. Sahoo, Soumyadev Maity","doi":"10.1145/3288599.3296014","DOIUrl":null,"url":null,"abstract":"Resource constrained devices such as sensors and RFIDs are utilized in many application areas to sense, store and transmit the sensitive data. This data must be encrypted to achieve confidentiality. The implementation of traditional public key encryption (PKE) techniques by these devices is always challenging as they possess very limited computational resources. Various encryption schemes based on identity-based encryption (IBE) and certificate-less public key encryption (CL-PKE) have been proposed to overcome limitations of PKI. However, many of these schemes involve the computationally expensive exponentiation and bilinear pairing operations on elliptic curve group to encrypt the messages. In this context, we propose a lightweight optimized CL-PKE scheme in which exponentiation and pairing operations are completely eliminated during encryption and only involves computation of cheaper addition and multiplication operations on elliptic curve. Implementation of the proposed scheme confirms its lightweight nature as compared to original CL-PKE scheme.","PeriodicalId":346177,"journal":{"name":"Proceedings of the 20th International Conference on Distributed Computing and Networking","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Distributed Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3288599.3296014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Resource constrained devices such as sensors and RFIDs are utilized in many application areas to sense, store and transmit the sensitive data. This data must be encrypted to achieve confidentiality. The implementation of traditional public key encryption (PKE) techniques by these devices is always challenging as they possess very limited computational resources. Various encryption schemes based on identity-based encryption (IBE) and certificate-less public key encryption (CL-PKE) have been proposed to overcome limitations of PKI. However, many of these schemes involve the computationally expensive exponentiation and bilinear pairing operations on elliptic curve group to encrypt the messages. In this context, we propose a lightweight optimized CL-PKE scheme in which exponentiation and pairing operations are completely eliminated during encryption and only involves computation of cheaper addition and multiplication operations on elliptic curve. Implementation of the proposed scheme confirms its lightweight nature as compared to original CL-PKE scheme.