An electronic parallel neural CAM for decoding

J. Alspector, A. Jayakumar, B. Ngo
{"title":"An electronic parallel neural CAM for decoding","authors":"J. Alspector, A. Jayakumar, B. Ngo","doi":"10.1109/NNSP.1992.253654","DOIUrl":null,"url":null,"abstract":"The authors report measurements taken on an electronic neural system configured for content addressable memory (CAM) using a high-capacity architecture. It is shown that Boltzmann and mean-field learning networks can be implemented in a parallel, analog VLSI system. This system was used to perform experiments with mean-field CAM. The hardware settles on a stored codeword in about 10 mu s roughly independent of code length. The capacity is far higher than that of the standard Hopfield architecture.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors report measurements taken on an electronic neural system configured for content addressable memory (CAM) using a high-capacity architecture. It is shown that Boltzmann and mean-field learning networks can be implemented in a parallel, analog VLSI system. This system was used to perform experiments with mean-field CAM. The hardware settles on a stored codeword in about 10 mu s roughly independent of code length. The capacity is far higher than that of the standard Hopfield architecture.<>
用于解码的电子并行神经凸轮
作者报告了采用高容量架构配置内容可寻址存储器(CAM)的电子神经系统的测量结果。结果表明,玻尔兹曼和平均场学习网络可以在并行的模拟VLSI系统中实现。利用该系统进行了平均场CAM实验。硬件在大约10 μ s内确定一个存储的码字,这与代码长度大致无关。容量远远高于标准的Hopfield架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信